OFFSET
0,3
FORMULA
T(n,k) = 3*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(n,k) = 0 if k>n or if k<0.
Sum_{k, 0<=k<=n} T(n,k)= 3^n = A000244(n) (row sums).
G.f.: 1/(1-3*x*y-x^2*y+x^2*y^2). - R. J. Mathar, Aug 11 2015
T(n,k) = 2*Sum_{j=1..n+k} j*C(n+j,2*n-2*k+2*j)*C(n-k+j,j)/(n+j), T(0,0)=1. - Vladimir Kruchinin, Oct 28 2020
EXAMPLE
Triangle begins :
1,
0,3,
0,1,8,
0,0,6,21,
0,0,1,25,55,
0,0,0,9,90,144,
0,0,0,1,51,300,377,
0,0,0,0,12,234,954,987,
0,0,0,0,1,86,951,2939,2584,
0,0,0,0,0,15,480,3573,8850,6765,
0,0,0,0,0,1,130,2305,12707,26195,17711,
PROG
(Maxima)
T(n, k):=2*sum((j*binomial(n+j, 2*n-2*k+2*j)*binomial(n-k+j, j))/(n+j), j, 1, n+k); /* Vladimir Kruchinin_, Oct 28 2020 */
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jan 29 2010
STATUS
approved