login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261764
Triangle read by rows: T(n,k) is the number of nilpotent subpermutations on an n-set, each of nilpotency index less than or equal to k.
6
1, 0, 1, 0, 1, 3, 0, 1, 7, 13, 0, 1, 25, 49, 73, 0, 1, 81, 261, 381, 501, 0, 1, 331, 1531, 2611, 3331, 4051, 0, 1, 1303, 9073, 19993, 27553, 32593, 37633, 0, 1, 5937, 63393, 165873, 253233, 313713, 354033, 394353, 0, 1, 26785, 465769, 1436473, 2540233, 3326473, 3870793, 4233673, 4596553
OFFSET
0,6
REFERENCES
A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
LINKS
FORMULA
T(n, k) = T(n-1, k) + 2(n-1)T(n-2, k) + ... + k(n-1) ... (n-k+1)T(n-k, k), with T(n, 1) = 1 and T(n, n+r) = T(n, n) for every nonnegative integer r.
T(n,n) = A000262(n).
E.g.f. of column k: exp(x + x^2 + ... + x^k).
T(n,k) = Sum_{i=0..k} A157400(n,i).
EXAMPLE
T(3,2) = 7 because there are 7 nilpotent subpermutations on {1,2,3}, each of nilpotency index less than or equal to 2, namely: empty map, 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2.
Triangle starts:
1;
0, 1;
0, 1, 3;
0, 1, 7, 13;
0, 1, 25, 49, 73;
0, 1, 81, 261, 381, 501;
0, 1, 331, 1531, 2611, 3331, 4051;
...
MAPLE
egf:= k-> exp(add(x^j, j=1..k)):
T:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Oct 10 2015
# second Maple program:
T:= proc(n, k) option remember; `if`(n=0, 1, add(
T(n-j, k)*binomial(n-1, j-1)*j!, j=1..min(n, k)))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 29 2017
MATHEMATICA
Table[n!*SeriesCoefficient[Exp[x*(x^k-1)/(x-1)], {x, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 18 2016 *)
KEYWORD
nonn,tabl
AUTHOR
Samira Stitou, Sep 21 2015
EXTENSIONS
More terms from Alois P. Heinz, Oct 10 2015
STATUS
approved