login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261762
Triangle read by rows: T(n,k) is the number of subpermutations of an n-set whose orbits are each of size at most k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k.
6
1, 1, 1, 1, 1, 4, 1, 1, 10, 18, 1, 1, 46, 78, 108, 1, 1, 166, 486, 636, 780, 1, 1, 856, 3096, 4896, 5760, 6600, 1, 1, 3844, 21204, 40104, 52200, 58080, 63840, 1, 1, 21820, 167868, 363168, 508320, 602400, 648480, 693840, 1, 1, 114076, 1370268, 3490848, 5450400, 6720480
OFFSET
0,6
COMMENTS
The OEIS values correct the values b(n,k) in the Laradji-Umar Table 2.1 in column k=2. Note that the row sums (meaning: sums up to the diagonal of the triangle) in Table 2.1 in the article are also incorrect.
There were typos in the column (k=2) of the original article. The entry 94 should be 166 and the entry 784 should be 856, which have been corrected. Unlike most triangles the off-diagonal terms are not 0 because T(n, n)= T(n, n+k) for all nonnegative k which is obvious from the definition.
LINKS
A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
FORMULA
T(n,k) = T(n-1,k) + 3(n-1)T(n-2,k) + ... +(k+1)(n-1)(n-2)...(n-k+1)T(n-k,k) if k<=n.
T(n,k) = T(n,n) if k>n, not part of the triangle.
T(n,0) = T(n,1) = 1.
T(n,n) = A144085(n). (Diagonal)
G.f.: exp(x+(3x^2)/2+ ... +((k+1)x^k)/k).
EXAMPLE
T(3,2) = 10 because there are 10 subpermutations on {1,2,3}, each of whose orbit is of size at most 2, and without fixed points, namely: Empty map, (1,2) --> (2,1), (1,3) --> (3,1) (2,3) --> (3,2), 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2.
Triangle starts:
1;
1, 1;
1, 1, 4;
1, 1, 10, 18;
1, 1, 46, 78, 108;
1, 1, 166, 486, 636, 780;
...
MAPLE
A261762 := proc(n, k)
if k = 0 then
1;
else
if k < 1 then
g := 1;
elif k < 2 then
g := exp(x) ;
else
g := exp(x+add((j+1)*x^j/j, j=2..k)) ;
fi;
coeftayl(g, x=0, n) *n! ;
end if;
end proc:
seq(seq( A261762(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Nov 04 2015
MATHEMATICA
T[n_, k_] := SeriesCoefficient[ Exp[ x + Sum[ (j+1)*x^j/j, {j, 2, k}]], {x, 0, n}] * n!; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 13 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Samira Stitou, Sep 21 2015
EXTENSIONS
More terms from Alois P. Heinz, Oct 07 2015
STATUS
approved