login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290779
Number of 6-cycles in the n-triangular honeycomb bishop graph.
3
0, 0, 1, 57, 486, 2360, 8394, 24354, 61104, 137412, 283635, 546403, 994422, 1725516, 2875028, 4625700, 7219152, 10969080, 16276293, 23645709, 33705430, 47228016, 65154078, 88618310, 118978080, 157844700, 207117495, 269020791, 346143942, 441484516, 558494760
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
FORMULA
a(n) = binomial(n + 1, 4)*(-62 + 11*n - 109*n^2 + 40*n^3)/70.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: (x (x^2 + 49 x^3 + 58 x^4 + 12 x^5))/(-1 + x)^8.
MATHEMATICA
Table[Binomial[n + 1, 4] (-62 + 11 n - 109 n^2 + 40 n^3)/70, {n, 20}]
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 1, 57, 486, 2360, 8394, 24354}, 40]
CoefficientList[Series[(x^2 + 49 x^3 + 58 x^4 + 12 x^5)/(-1 + x)^8, {x, 0, 20}], x]
PROG
(PARI) a(n)=n*(40*n^6 - 189*n^5 + 189*n^4 + 105*n^3 - 105*n^2 + 84*n - 124)/1680 \\ Charles R Greathouse IV, Aug 10 2017
CROSSREFS
Cf. A034827 (3-cycles), A051843 (4-cycles), A290775 (5-cycles).
Sequence in context: A184224 A337629 A218812 * A027143 A164786 A240416
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Aug 10 2017
STATUS
approved