login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 6-cycles in the n-triangular honeycomb bishop graph.
3

%I #6 Aug 10 2017 12:58:06

%S 0,0,1,57,486,2360,8394,24354,61104,137412,283635,546403,994422,

%T 1725516,2875028,4625700,7219152,10969080,16276293,23645709,33705430,

%U 47228016,65154078,88618310,118978080,157844700,207117495,269020791,346143942,441484516,558494760

%N Number of 6-cycles in the n-triangular honeycomb bishop graph.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).

%F a(n) = binomial(n + 1, 4)*(-62 + 11*n - 109*n^2 + 40*n^3)/70.

%F a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).

%F G.f.: (x (x^2 + 49 x^3 + 58 x^4 + 12 x^5))/(-1 + x)^8.

%t Table[Binomial[n + 1, 4] (-62 + 11 n - 109 n^2 + 40 n^3)/70, {n, 20}]

%t LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 1, 57, 486, 2360, 8394, 24354}, 40]

%t CoefficientList[Series[(x^2 + 49 x^3 + 58 x^4 + 12 x^5)/(-1 + x)^8, {x, 0, 20}], x]

%o (PARI) a(n)=n*(40*n^6 - 189*n^5 + 189*n^4 + 105*n^3 - 105*n^2 + 84*n - 124)/1680 \\ _Charles R Greathouse IV_, Aug 10 2017

%Y Cf. A034827 (3-cycles), A051843 (4-cycles), A290775 (5-cycles).

%K nonn,easy

%O 1,4

%A _Eric W. Weisstein_, Aug 10 2017