login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows: the number of connected, loopless, non-oriented, vertex-labeled graphs with n >= 0 edges and k >= 1 vertices, allowing multi-edges.
3

%I #23 Aug 13 2018 09:09:05

%S 1,0,1,0,1,3,0,1,7,16,0,1,12,63,125,0,1,18,162,722,1296,0,1,25,341,

%T 2565,10140,16807,0,1,33,636,7180,47100,169137,262144,0,1,42,1092,

%U 17335,168285,987567,3271576,4782969,0,1,52,1764,37750,509545,4364017,23315936,72043092,100000000

%N Triangle T(n,k) read by rows: the number of connected, loopless, non-oriented, vertex-labeled graphs with n >= 0 edges and k >= 1 vertices, allowing multi-edges.

%C This is the vertex-labeled companion to A191646.

%H Andrew Howroyd, <a href="/A290776/b290776.txt">Table of n, a(n) for n = 0..1274</a>

%H R. J. Mathar, <a href="http://arxiv.org/abs/1709.09000">Statistics on Small Graphs</a>, arXiv:1709.09000 [math.CO] (2017), Table 62.

%e The triangle starts in row n=0 with 1 <= k <= n+1 vertices as

%e 1;

%e 0, 1;

%e 0, 1, 3;

%e 0, 1, 7, 16;

%e 0, 1, 12, 63, 125;

%e 0, 1, 18, 162, 722, 1296;

%e 0, 1, 25, 341, 2565, 10140, 16807;

%e 0, 1, 33, 636, 7180, 47100, 169137, 262144;

%e 0, 1, 42, 1092, 17355, 168285, 987567, 3271576, 4782969;

%e 0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000;

%e ...

%t S[m_, n_] := Binomial[Binomial[m, 2] + n - 1, n];

%t R[nn_] := Module[{cc = Array[0&, {nn, nn}]}, cc[[1, 1]] = 1; For[m = 1, m <= nn, m++, For[n = 1, n <= nn-1, n++, cc[[m, n+1]] = S[m, n] - S[m-1, n] - Sum[Sum[Binomial[m-1, i-1]*cc[[i, j+1]]*S[m-i, n-j], {j, 1, n}], {i, 2, m-1}]]]; cc // Transpose];

%t A = R[10];

%t Table[A[[n, k]], {n, 1, Length[A]}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Aug 13 2018, after _Andrew Howroyd_ *)

%o (PARI) \\ here S(m,n) is m nodes with n edges, not necessarily connected

%o S(m,n)={ binomial(binomial(m,2) + n - 1, n) }

%o R(N)={ my(C=matrix(N,N)); C[1,1]=1; for(m=1, N, for(n=1, N-1, C[m,n+1] = S(m,n) - S(m-1,n) - sum(i=2, m-1, sum(j=1, n, binomial(m-1, i-1)*C[i,j+1]*S(m-i, n-j))))); C~; }

%o { my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n,k],", ")); print) } \\ _Andrew Howroyd_, May 13 2018

%Y Cf. A055998 (k=3), A000272 (diagonal), A060091 (k=4?), A060093 (k=5?).

%K nonn,tabl

%O 0,6

%A _R. J. Mathar_, Aug 10 2017

%E Terms a(34) and beyond from _Andrew Howroyd_, May 13 2018