login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115979
Expansion of (1 - theta_4(q)*theta_4(q^3))/2 in powers of q.
5
1, 0, 1, -3, 0, 0, 2, 0, 1, 0, 0, -3, 2, 0, 0, -3, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, -6, 0, 0, 2, 0, 0, 0, 0, -3, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, -3, 3, 0, 0, -6, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, -6, 0, 0, 2, 0, 1, 0, 0, -6, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, -3, 0, 0, 2, 0, 0
OFFSET
1,4
LINKS
FORMULA
Expansion of (1-(eta(q)*eta(q^3))^2/(eta(q^2)*eta(q^6)))/2 in powers of q.
Moebius transform is period 12 sequence [1,-1,0,-3,-1,0,1,3,0,1,-1,0,...].
a(n) is multiplicative and a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e)=1, a(p^e) = 1+e if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} x^(k)/(1+x^k+x^(2k)) -4x^(4k)/(1+x^(4k)+x^(8k)).
a(n) = -(-1)^n*A096936(n).
A115978(n) = -2*a(n) if n > 0.
MAPLE
S:=series((1-JacobiTheta4(0, q)*JacobiTheta4(0, q^3))/2, q, 106):
seq(coeff(S, q, n), n=1..105); # Robert Israel, Nov 20 2017
MATHEMATICA
Drop[CoefficientList[Series[(1 -EllipticTheta[4, 0, q]*EllipticTheta[4, 0, q^3])/2, {q, 0, 110}], q], 1] (* G. C. Greubel, May 09 2019 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=x*O(x^n); polcoeff( (eta(x+A)*eta(x^3+A))^2/eta(x^2+A)/eta(x^6+A), n)/-2)}
(Scheme) (define (A115979 n) (- (* (expt -1 n) (A096936 n)))) ;; Follow A096936 for the rest of code. - Antti Karttunen, Nov 20 2017
(Sage)
def E(x): return 1 + 2*sum((-1)^k*x^(k^2) for k in (1..50))
a=((1 - E(x)*E(x^3))/2).series(x, 110).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 09 2019
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Feb 09 2006
STATUS
approved