login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099475
Number of divisors d of n such that d+2 is also a divisor of n.
5
0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 2, 1, 0, 1, 0, 1, 1, 0, 0, 4, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 4, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 5, 0, 0, 2, 1, 0, 1, 0, 1, 1, 1, 0, 4, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0, 0, 4, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 4, 0, 0, 2, 1, 0, 1, 0, 1, 3
OFFSET
1,12
COMMENTS
Number of r X s rectangles with integer sides such that r < s, r + s = 2n, r | s and (s - r) | (s * r). - Wesley Ivan Hurt, Apr 24 2020
LINKS
FORMULA
0 <= a(n) <= a(m*n) for all m>0;
a(A099477(n)) = 0; a(A059267(n)) > 0;
a(A099476(n)) = n and a(m) <> n for m < A099476(n).
For n>0: a(A008585(n))>0, a(A008586(n))>0 and a(A008588(n))>0.
a(n) = Sum_{i=1..n-1} chi((2*n-i)/i) * chi(i*(2*n-i)/(2*n-2*i)), where chi(n) = 1 - ceiling(n) + floor(n). - Wesley Ivan Hurt, Apr 24 2020
MAPLE
A099475:= proc(n)
local d;
d:= numtheory:-divisors(n);
nops(d intersect map(`+`, d, 2))
end proc:
map(A099475, [$1..1000]); # Robert Israel, Jun 19 2015
MATHEMATICA
a[n_] := DivisorSum[n, Boole[Divisible[n, #+2]]&]; Array[a, 105] (* Jean-François Alcover, Dec 07 2015 *)
PROG
(PARI) A099475(n) = { sumdiv(n, d, ! (n % (d+2))) } \\ Michel Marcus, Jun 18 2015
CROSSREFS
Cf. A007862 (similar but with d+1 instead).
Sequence in context: A096936 A115979 A067168 * A120569 A128113 A108930
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 18 2004
STATUS
approved