

A120569


Number of isosceles triangles with integer sides and inradius n.


1



0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 3, 0, 0, 2, 1, 0, 1, 0, 2, 2, 0, 0, 5, 0, 0, 1, 1, 0, 3, 0, 1, 1, 0, 1, 4, 0, 0, 1, 3, 0, 3, 0, 1, 2, 0, 0, 5, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 8, 0, 0, 3, 1, 0, 1, 0, 1, 1, 2, 0, 6, 0, 0, 2, 1, 0, 2, 0, 3, 1, 0, 0, 6, 0, 0, 1, 1, 0, 4, 0, 1, 1, 0, 0, 5, 0, 0, 2, 2, 0, 1, 0, 1, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


REFERENCES

Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.


LINKS

David W. Wilson, Table of n, a(n) for n = 1..10000


EXAMPLE

a(24) = 5 because 5 integersided isosceles triangles, namely (a,b,c) = (80,80,96), (80,85,85), (90,90,144), (130,130,240), (175,175,336), have inradius 24.


CROSSREFS

See A120062 for sequences related to integersided triangles with integer inradius n.
Sequence in context: A115979 A067168 A099475 * A128113 A108930 A059682
Adjacent sequences: A120566 A120567 A120568 * A120570 A120571 A120572


KEYWORD

nonn


AUTHOR

David W. Wilson, Jun 17 2006


STATUS

approved



