login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120568
Triangle, read by rows, where the k-th column equals the k-th self-composition of column 1 (A120567) for k>=0, such that row sums equal column 1.
2
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 15, 21, 12, 4, 1, 0, 53, 82, 54, 20, 5, 1, 0, 215, 351, 263, 110, 30, 6, 1, 0, 976, 1630, 1364, 644, 195, 42, 7, 1, 0, 4859, 8151, 7469, 3956, 1335, 315, 56, 8, 1, 0, 26150, 43627, 42971, 25304, 9505, 2470, 476, 72, 9, 1
OFFSET
1,8
LINKS
EXAMPLE
The successive iterations of the g.f. of column 1 begin:
F(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 53*x^6 + 215*x^7 + 976*x^8+...
F(F(x)) = x + 2*x^2 + 6*x^3 + 21*x^4 + 82*x^5 + 351*x^6 + 1630*x^7 +...
F(F(F(x))) = x + 3*x^2 + 12*x^3 + 54*x^4 + 263*x^5 + 1364*x^6 +...
F(F(F(F(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 644*x^5 + 3956*x^6 +...
F(F(F(F(F(x))))) = x + 5*x^2 + 30*x^3 + 195*x^4 + 1335*x^5 +9505*x^6+...
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 6, 3, 1;
0, 15, 21, 12, 4, 1;
0, 53, 82, 54, 20, 5, 1;
0, 215, 351, 263, 110, 30, 6, 1;
0, 976, 1630, 1364, 644, 195, 42, 7, 1;
0, 4859, 8151, 7469, 3956, 1335, 315, 56, 8, 1;
0, 26150, 43627, 42971, 25304, 9505, 2470, 476, 72, 9, 1;
0, 150585, 248631, 258976, 167804, 69899, 20023, 4207, 684, 90, 10, 1;
where column k equals the k-th self-composition of column 1.
PROG
(PARI) {ITERATE(n, F, p=#F)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
{T(n, k)=local(F=x+x*O(x^n), G=F, H=x); for(i=1, n, for(j=1, n, G=subst(F, x, G); H=H+x^j*G); F=H; G=x+x*O(x^n); H=G); polcoeff(ITERATE(k, F), n-k)}
for(n=1, 15, for(k=0, n-1, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A120567 (column 1).
Sequence in context: A110281 A120059 A067347 * A321960 A189233 A242153
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 14 2006
STATUS
approved