login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103439
a(n) = Sum_{i=0..n-1} Sum_{j=0..i} (i-j+1)^j.
5
0, 1, 3, 7, 16, 39, 105, 315, 1048, 3829, 15207, 65071, 297840, 1449755, 7468541, 40555747, 231335960, 1381989881, 8623700811, 56078446615, 379233142800, 2662013133295, 19362917622001, 145719550012299, 1133023004941272, 9090156910550109, 75161929739797519
OFFSET
0,3
COMMENTS
Partial sums of A026898.
Antidiagonal sums of array A103438.
Row sums of A123490. - Paul Barry, Oct 01 2006
LINKS
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
FORMULA
a(n+1) = Sum_{k=0..n} ((k+2)^(n-k) + k)/(k+1). - Paul Barry, Oct 01 2006
G.f.: (G(0)-1)/(1-x) where G(k) = 1 + x*(2*k*x-1)/(2*k*x+x-1 - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
MAPLE
b:= proc(i) option remember; add((i-j+1)^j, j=0..i) end:
a:= proc(n) option remember; add(b(i), i=0..n-1) end:
seq(a(n), n=0..30); # Alois P. Heinz, Dec 02 2019
MATHEMATICA
Join[{0}, Table[Sum[Sum[(i-j+1)^j, {j, 0, i}], {i, 0, n}], {n, 0, 30}]] (* Harvey P. Dale, Dec 03 2018 *)
PROG
(Magma) [0] cat [(&+[ (&+[ (k-j+1)^j : j in [0..k]]) : k in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Jun 15 2021
(Sage) [sum(sum((k-j+1)^j for j in (0..k)) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Jun 15 2021
(PARI) a(n) = sum(i=0, n-1, sum(j=0, i, (i-j+1)^j)); \\ Michel Marcus, Jun 15 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Feb 11 2005
EXTENSIONS
Name edited by Alois P. Heinz, Dec 02 2019
STATUS
approved