OFFSET
0,3
COMMENTS
Partial sums of A026898.
Antidiagonal sums of array A103438.
Row sums of A123490. - Paul Barry, Oct 01 2006
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..600
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
FORMULA
a(n+1) = Sum_{k=0..n} ((k+2)^(n-k) + k)/(k+1). - Paul Barry, Oct 01 2006
G.f.: (G(0)-1)/(1-x) where G(k) = 1 + x*(2*k*x-1)/(2*k*x+x-1 - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
MAPLE
b:= proc(i) option remember; add((i-j+1)^j, j=0..i) end:
a:= proc(n) option remember; add(b(i), i=0..n-1) end:
seq(a(n), n=0..30); # Alois P. Heinz, Dec 02 2019
MATHEMATICA
Join[{0}, Table[Sum[Sum[(i-j+1)^j, {j, 0, i}], {i, 0, n}], {n, 0, 30}]] (* Harvey P. Dale, Dec 03 2018 *)
PROG
(Magma) [0] cat [(&+[ (&+[ (k-j+1)^j : j in [0..k]]) : k in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Jun 15 2021
(Sage) [sum(sum((k-j+1)^j for j in (0..k)) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Jun 15 2021
(PARI) a(n) = sum(i=0, n-1, sum(j=0, i, (i-j+1)^j)); \\ Michel Marcus, Jun 15 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Feb 11 2005
EXTENSIONS
Name edited by Alois P. Heinz, Dec 02 2019
STATUS
approved