login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271788
Number of set partitions of [n] having exactly one pair (m,m+1) such that m is in some block b and m+1 is in block b+1.
2
0, 1, 3, 7, 16, 39, 105, 314, 1035, 3723, 14494, 60670, 271544, 1293147, 6523495, 34724247, 194357190, 1140402612, 6995760364, 44760085240, 298054873358, 2061644525813, 14787185811993, 109804829195145, 842928183558160, 6680572760715182, 54595535222727960
OFFSET
1,3
LINKS
EXAMPLE
a(2) = 1: 1|2.
a(3) = 3: 12|3, 13|2, 1|23.
a(4) = 7: 123|4, 124|3, 12|34, 134|2, 13|2|4, 14|23, 1|234.
a(5) = 16: 1234|5, 1235|4, 123|45, 1245|3, 124|3|5, 125|34, 12|345, 1345|2, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 145|23, 14|23|5, 15|234, 1|2345.
MAPLE
b:= proc(n, i, m, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
add(`if`(j=i+1 and k=0, 0, b(n-1, j, max(m, j), k-
`if`(j=i+1, 1, 0))), j=1..m+1))
end:
a:= n-> b(n, 1, 0, 1):
seq(a(n), n=1..30);
MATHEMATICA
b[n_, i_, m_, k_] := b[n, i, m, k] = If[n == 0, If[k == 0, 1, 0], Sum[If[j == i + 1 && k == 0, 0, b[n - 1, j, Max[m, j], k - If[j == i + 1, 1, 0]]], {j, 1, m + 1}]];
a[n_] := b[n, 1, 0, 1];
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 27 2018, translated from Maple *)
CROSSREFS
Column k=1 of A185982.
Sequence in context: A203611 A176604 A014140 * A103439 A147321 A103030
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 14 2016
STATUS
approved