Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 27 2018 07:00:54
%S 0,1,3,7,16,39,105,314,1035,3723,14494,60670,271544,1293147,6523495,
%T 34724247,194357190,1140402612,6995760364,44760085240,298054873358,
%U 2061644525813,14787185811993,109804829195145,842928183558160,6680572760715182,54595535222727960
%N Number of set partitions of [n] having exactly one pair (m,m+1) such that m is in some block b and m+1 is in block b+1.
%H Alois P. Heinz, <a href="/A271788/b271788.txt">Table of n, a(n) for n = 1..500</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%e a(2) = 1: 1|2.
%e a(3) = 3: 12|3, 13|2, 1|23.
%e a(4) = 7: 123|4, 124|3, 12|34, 134|2, 13|2|4, 14|23, 1|234.
%e a(5) = 16: 1234|5, 1235|4, 123|45, 1245|3, 124|3|5, 125|34, 12|345, 1345|2, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 145|23, 14|23|5, 15|234, 1|2345.
%p b:= proc(n, i, m, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
%p add(`if`(j=i+1 and k=0, 0, b(n-1, j, max(m, j), k-
%p `if`(j=i+1, 1, 0))), j=1..m+1))
%p end:
%p a:= n-> b(n, 1, 0, 1):
%p seq(a(n), n=1..30);
%t b[n_, i_, m_, k_] := b[n, i, m, k] = If[n == 0, If[k == 0, 1, 0], Sum[If[j == i + 1 && k == 0, 0, b[n - 1, j, Max[m, j], k - If[j == i + 1, 1, 0]]], {j, 1, m + 1}]];
%t a[n_] := b[n, 1, 0, 1];
%t Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, May 27 2018, translated from Maple *)
%Y Column k=1 of A185982.
%K nonn
%O 1,3
%A _Alois P. Heinz_, Apr 14 2016