OFFSET
0,1
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 141.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..357
Arthur T. Benjamin, Judson D. Neer, Daniel T. Otero and James A. Sellers, A probabilistic view of certain weighted Fibonacci sums, Fibonacci Quarterly, Vol. 41, No. 4 (2002), pp. 360-364.
FORMULA
a(n) = (PolyLog(-n, (1 + sqrt(5))/4) - PolyLog(-n, (1 - sqrt(5))/4))/sqrt(5). - Vladimir Reshetnikov, Jan 20 2011
a(n) = 2 * A098799(n). - Amiram Eldar, Jun 16 2020
MATHEMATICA
a[n_] := Simplify[(PolyLog[-n, GoldenRatio/2] - PolyLog [-n, (1-GoldenRatio)/2]) / Sqrt[5]]; Array[a, 20, 0] (* Amiram Eldar, Jun 16 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Feb 08 2005
STATUS
approved