OFFSET
0,3
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 234.
LINKS
Belgacem Bouras, A New Characterization of Catalan Numbers Related to Hankel Transforms and Fibonacci Numbers, Journal of Integer Sequences, 16 (2013), #13.3.3.
M. Dougherty, C. French, B. Saderholm, W. Qian,, Hankel Transforms of Linear Combinations of Catalan Numbers, J. Int. Seq. 14 (2011) # 11.5.1.
Index entries for linear recurrences with constant coefficients, signature (9,-16,9,-1).
FORMULA
G.f.: x*(1-4*x+x^2) / ((1-7*x+x^2)(1-x)^2).
a(n) = (1/5)*(Fibonacci(4n) + 2n).
a(n) = (floor(5*n*phi) + 4*Fibonacci(4*n))/20, where phi =(1+sqrt(5))/2. - Gary Detlefs, Mar 10 2011
a(n) = (8*(n+2)*(Sum_{k=1..n} 1/(2*k^2 + 6*k + 4)) + Fibonacci(4*n))/5. - Gary Detlefs, Dec 07 2011
a(n) = | Sum_{i=0..2n-1} (-1)^i*F(i)*F(i+1) |, where F(n) = Fibonacci numbers (A000045). - Rigoberto Florez, May 04 2019
MATHEMATICA
Table[(Fibonacci[4n]+2n)/5, {n, 0, 20}] (* Rigoberto Florez, May 04 2019 *)
PROG
(Magma) [(1/5)*(Fibonacci(4*n)+2*n): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
(PARI) a(n)=(fibonacci(4*n)+2*n)/5 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Feb 08 2005
STATUS
approved