login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103433
a(n) = Sum_{i=1..n} Fibonacci(2i-1)^2.
6
0, 1, 5, 30, 199, 1355, 9276, 63565, 435665, 2986074, 20466835, 140281751, 961505400, 6590256025, 45170286749, 309601751190, 2122041971551, 14544692049635, 99690802375860, 683290924581349, 4683345669693545
OFFSET
0,3
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 234.
LINKS
Belgacem Bouras, A New Characterization of Catalan Numbers Related to Hankel Transforms and Fibonacci Numbers, Journal of Integer Sequences, 16 (2013), #13.3.3.
M. Dougherty, C. French, B. Saderholm, W. Qian,, Hankel Transforms of Linear Combinations of Catalan Numbers, J. Int. Seq. 14 (2011) # 11.5.1.
FORMULA
G.f.: x*(1-4*x+x^2) / ((1-7*x+x^2)(1-x)^2).
a(n) = (1/5)*(Fibonacci(4n) + 2n).
a(n) = (floor(5*n*phi) + 4*Fibonacci(4*n))/20, where phi =(1+sqrt(5))/2. - Gary Detlefs, Mar 10 2011
a(n) = (8*(n+2)*(Sum_{k=1..n} 1/(2*k^2 + 6*k + 4)) + Fibonacci(4*n))/5. - Gary Detlefs, Dec 07 2011
a(n) = | Sum_{i=0..2n-1} (-1)^i*F(i)*F(i+1) |, where F(n) = Fibonacci numbers (A000045). - Rigoberto Florez, May 04 2019
MATHEMATICA
Table[(Fibonacci[4n]+2n)/5, {n, 0, 20}] (* Rigoberto Florez, May 04 2019 *)
PROG
(Magma) [(1/5)*(Fibonacci(4*n)+2*n): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
(PARI) a(n)=(fibonacci(4*n)+2*n)/5 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Partial sums of A081068. Bisection of A077916.
Sequence in context: A265279 A034164 A322257 * A081015 A090139 A107265
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Feb 08 2005
STATUS
approved