login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090139
a(n) = 10*a(n-1) - 20*a(n-2), a(0)=1,a(1)=5.
8
1, 5, 30, 200, 1400, 10000, 72000, 520000, 3760000, 27200000, 196800000, 1424000000, 10304000000, 74560000000, 539520000000, 3904000000000, 28249600000000, 204416000000000, 1479168000000000, 10703360000000000
OFFSET
0,2
COMMENTS
Fifth binomial transform of (1, 0, 5, 0, 25, 0, ...).
FORMULA
a(n) = ((5-sqrt(5))^n + (5+sqrt(5))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k) * 5^(n-k).
a(n) = Sum_{k=0..n} C(n, k) * 5^(n-k/2) * (1+(-1)^k)/2.
a(n) = Sum_{k=0..n} 5^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: (1-5*x)/(1-10*x+20*x^2). - G. C. Greubel, Aug 02 2019
MATHEMATICA
LinearRecurrence[{10, -20}, {1, 5}, 30] (* G. C. Greubel, Aug 02 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-5*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Aug 02 2019
(Magma) I:=[1, 5]; [n le 2 select I[n] else 10*Self(n-1) -20*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
(Sage) ((1-5*x)/(1-10*x+20*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
(GAP) a:=[1, 5];; for n in [3..30] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
CROSSREFS
Sequence in context: A322257 A103433 A081015 * A107265 A196678 A128328
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 22 2003
STATUS
approved