OFFSET
0,2
COMMENTS
Fifth binomial transform of (1, 0, 5, 0, 25, 0, ...).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (10,-20).
FORMULA
a(n) = ((5-sqrt(5))^n + (5+sqrt(5))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k) * 5^(n-k).
a(n) = Sum_{k=0..n} C(n, k) * 5^(n-k/2) * (1+(-1)^k)/2.
a(n) = Sum_{k=0..n} 5^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: (1-5*x)/(1-10*x+20*x^2). - G. C. Greubel, Aug 02 2019
MATHEMATICA
LinearRecurrence[{10, -20}, {1, 5}, 30] (* G. C. Greubel, Aug 02 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-5*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Aug 02 2019
(Magma) I:=[1, 5]; [n le 2 select I[n] else 10*Self(n-1) -20*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
(Sage) ((1-5*x)/(1-10*x+20*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
(GAP) a:=[1, 5];; for n in [3..30] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 22 2003
STATUS
approved