Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:12
%S 1,5,30,200,1400,10000,72000,520000,3760000,27200000,196800000,
%T 1424000000,10304000000,74560000000,539520000000,3904000000000,
%U 28249600000000,204416000000000,1479168000000000,10703360000000000
%N a(n) = 10*a(n-1) - 20*a(n-2), a(0)=1,a(1)=5.
%C Fifth binomial transform of (1, 0, 5, 0, 25, 0, ...).
%H G. C. Greubel, <a href="/A090139/b090139.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-20).
%F a(n) = ((5-sqrt(5))^n + (5+sqrt(5))^n)/2.
%F a(n) = Sum_{k=0..floor(n/2)} C(n, 2k) * 5^(n-k).
%F a(n) = Sum_{k=0..n} C(n, k) * 5^(n-k/2) * (1+(-1)^k)/2.
%F a(n) = Sum_{k=0..n} 5^k*A098158(n,k). - _Philippe Deléham_, Dec 04 2006
%F G.f.: (1-5*x)/(1-10*x+20*x^2). - _G. C. Greubel_, Aug 02 2019
%t LinearRecurrence[{10, -20}, {1,5}, 30] (* _G. C. Greubel_, Aug 02 2019 *)
%o (PARI) my(x='x+O('x^30)); Vec((1-5*x)/(1-10*x+20*x^2)) \\ _G. C. Greubel_, Aug 02 2019
%o (Magma) I:=[1,5]; [n le 2 select I[n] else 10*Self(n-1) -20*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Aug 02 2019
%o (Sage) ((1-5*x)/(1-10*x+20*x^2)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Aug 02 2019
%o (GAP) a:=[1,5];; for n in [3..30] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # _G. C. Greubel_, Aug 02 2019
%K easy,nonn
%O 0,2
%A _Paul Barry_, Nov 22 2003