login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107265
Expansion of (1-5*x-sqrt((1-5*x)^2-4*5*x^2))/(2*5*x^2).
3
1, 5, 30, 200, 1425, 10625, 81875, 646875, 5211875, 42659375, 353725000, 2965031250, 25083859375, 213894609375, 1836516718750, 15863968750000, 137767560546875, 1202116083984375, 10534061644531250, 92664360625000000, 817975366904296875, 7243402948779296875
OFFSET
0,2
COMMENTS
Series reversion of x/(1+5x+5x^2). Transform of 5^n under the matrix A107131. A row of A107267.
Counts colored Motzkin paths, where H(1,0) and U(1,1) each have 5 colors and D(1,-1) one color. - Paul Barry, May 16 2005
LINKS
FORMULA
G.f.: (1-5*x-sqrt(1-10*x+5*x^2))/(10*x^2).
a(n) = Sum_{k=0..n} (1/(k+1)) * C(k+1,n-k+1) * C(n, k) * 5^k.
E.g.f.: a(n) = n!* [x^n] exp(5*x)*BesselI(1,2*sqrt(5)*x) /(sqrt(5)*x). -Peter Luschny, Aug 25 2012
D-finite with recurrence: (n+2)*a(n) = 5*(2*n+1)*a(n-1) - 5*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(38+17*sqrt(5))*(5+2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f.: 1/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - 5*x - 5*x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
MATHEMATICA
CoefficientList[Series[(1-5*x-Sqrt[1-10*x+5*x^2])/(10*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
PROG
(PARI) x='x+O('x^66); Vec((1-5*x-sqrt(1-10*x+5*x^2))/(10*x^2)) \\ Joerg Arndt, May 15 2013
CROSSREFS
Sequence in context: A103433 A081015 A090139 * A196678 A128328 A245376
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 15 2005
STATUS
approved