login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107131 A Motzkin related triangle. 11
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 2, 6, 1, 0, 0, 0, 10, 10, 1, 0, 0, 0, 5, 30, 15, 1, 0, 0, 0, 0, 35, 70, 21, 1, 0, 0, 0, 0, 14, 140, 140, 28, 1, 0, 0, 0, 0, 0, 126, 420, 252, 36, 1, 0, 0, 0, 0, 0, 42, 630, 1050, 420, 45, 1, 0, 0, 0, 0, 0, 0, 462, 2310, 2310, 660, 55, 1, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Row sums are Motzkin numbers A001006. Diagonal sums are A025250(n+1).

Inverse binomial transform of Narayana number triangle A001263. - Paul Barry, May 15 2005

T(n,k)=number of Motzkin paths of length n with k steps U=(1,1) or H=(1,0). Example: T(3,2)=3 because we have HUD, UDH and UHD (here D=(1,-1)). T(n,k) = number of bushes with n+1 edges and k+1 leaves (a bush is an ordered tree in which the outdegree of each nonroot node is at least two). - Emeric Deutsch, May 29 2005

Coefficient array for the polynomials P(n,x)=x^n*F(1/2-n/2,-n/2;2;4/x). - Paul Barry, Oct 04 2008

Row reverse of A055151. - Peter Bala, May 07 2012

Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, which give the row polynomials (mod signs) of the o.g.f. that is the compositional inverse for an o.g.f. of the Fibonacci polynomials of A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131. The diagonals of A107131 give the columns of A055151. From the relation between A088617 and A107131, the o.g.f. of this entry is [1-tx-sqrt[(1-tx)^2-4tx^2]]/2tx^2. - Tom Copeland, Jan 21 2016

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).

Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, Matteo Silimbani, Consecutive patterns in restricted permutations and involutions, arXiv:1902.02213 [math.CO], 2019.

P. Barry, A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations , J. Int. Seq. 14 (2011) # 11.3.8

FORMULA

Number triangle T(n, k) = binomial(k+1, n-k+1)*binomial(n, k)/(k+1).

T(n, k) = sum{j=0..n, (-1)^(n-j)C(n, j)C(j+1, k)C(j+1, k+1)/(j+1)}. - Paul Barry, May 15 2005

G.f.: G=G(t, z) satisfies G=1+tzG+tz^2*G^2. - Emeric Deutsch, May 29 2005

From Paul Barry, Jan 12 2009: (Start)

G.f.: 1/(1-xy(1+x)/(1-x^2*y/(1-xy(1+x)/(1-x^2y/(1-xy(1+x).... (continued fraction).

T(n,k) = C(n,2n-2k)*A000108(n-k). (End)

EXAMPLE

Triangle begins

  1;

  0,  1;

  0,  1,  1;

  0,  0,  3,  1;

  0,  0,  2,  6,  1;

  0,  0,  0, 10, 10,  1;

MAPLE

egf := exp(t*x)*hypergeom([], [2], t*x^2);

s := n -> n!*coeff(series(egf, x, n+2), x, n);

seq(print(seq(coeff(s(n), t, j), j=0..n)), n=0..9); # Peter Luschny, Oct 29 2014

MATHEMATICA

T[n_, k_] := Binomial[k+1, n-k+1] Binomial[n, k]/(k+1);

Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)

CROSSREFS

A001006 (row sums), A001263, A025250 (diag. sums), A055151 (row reverse).

Cf. A011973, A055151, A088617.

Sequence in context: A229143 A330018 A065413 * A027200 A035654 A170846

Adjacent sequences:  A107128 A107129 A107130 * A107132 A107133 A107134

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, May 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 07:07 EST 2020. Contains 331317 sequences. (Running on oeis4.)