login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372739
a(n) is the number of possible values of k such that the sum of aliquot coreful divisors of k (A336563) is n.
4
0, 1, 1, 0, 1, 3, 1, 0, 0, 2, 1, 1, 1, 3, 2, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 0, 0, 1, 6, 1, 0, 2, 2, 2, 1, 1, 2, 3, 0, 1, 5, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 2, 1, 2, 1, 3, 0, 0, 2, 4, 1, 0, 2, 4, 1, 0, 1, 2, 0, 0, 2, 5, 1, 1, 0, 2, 1, 1, 2, 2, 2
OFFSET
1,6
COMMENTS
A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
LINKS
FORMULA
a(n) = 0 if and only if n is in A372740.
a(n) = 1 if and only if n is in A372742.
EXAMPLE
a(2) = 1 since there is 1 possible value of k, k = 4, such that A336563(k) = 2.
a(6) = 3 since there are 3 possible values of k, k = 8, 12 and 18, such that A336563(k) = 6.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[0 < i <= max, v[[i]]++], {k, 1, max^2}]; v]; seq[100]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1) - n; }
lista(nmax) = {my(v = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); v; }
CROSSREFS
Similar sequences: A048138, A324938, A331971, A331973.
Sequence in context: A229143 A330018 A065413 * A107131 A027200 A035654
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 12 2024
STATUS
approved