login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229143 Expansion of (b(q^3) - b(q)) / 3 in powers of q where b() is a cubic AGM theta function. 2
1, 0, -3, 1, 0, 0, 2, 0, 0, 0, 0, -3, 2, 0, 0, 1, 0, 0, 2, 0, -6, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -6, 0, 0, 0, 2, 0, 0, 0, 0, -3, 3, 0, 0, 2, 0, 0, 0, 0, -6, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -3, 2, 0, 0, 2, 0, 0, 0, 0, -6 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Rogers and Zudilin (2011) page 6: "This identity can be verified by eliminating b(q) with b(q^{1/3}) - b(q) = 3c(q^3) - c(q)."
The zeros of the g.f. A(q) where q = exp(2 Pi i t) are of the form t = (m/2 + sqrt(-3)/18) / n where m is an odd integer and n is in A004611. For example, (1/2 + sqrt(-3)/18) / 1, (1/2 + sqrt(-3)/18) / 7, (5/2 + sqrt(-3)/18) / 13.
LINKS
M. Rogers and W. Zudilin, On the Mahler measure of 1 + X + 1/X + Y + 1/Y, arXiv:1102.1153 [math.NT], 2011.
FORMULA
Expansion of c(q^3) / 3 - c(q^9) in powers of q where c() is a cubic AGM theta function.
Expansion of (a(q) - 4*a(q^3) + 3*a(q^9)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of (eta(q^3)^4 - eta(q)^3 * eta(q^9)) / (3 * eta(q^3) * eta(q^9)) in powers of q.
a(n) is multiplicative with a(3) = -3, a(3^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1 + (-1)^e) / 2 if p == 2 (mod 3).
G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(3*n + 2) = a(4*n + 2) = a(9*n) = a(9*n + 6) = 0. a(3*n + 1) = A033687(n). a(9*n + 3) = -3 * A033687(n).
From Michael Somos, Jun 16 2015: (Start)
a(4*n) = a(n). a(6*n + 1) = A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
a(n) = Sum_{d|n} A259024(n/d) * [ 0, 1, 0, -2, 0, 1][mod(d, 6) + 1]. (End)
EXAMPLE
G.f. = q - 3*q^3 + q^4 + 2*q^7 - 3*q^12 + 2*q^13 + q^16 + 2*q^19 - 6*q^21 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3]^4 - QPochhammer[ q^9] QPochhammer[ q]^3) / (3 QPochhammer[ q^3] QPochhammer[ q^9]), {q, 0, n}]; (* Michael Somos, Jun 16 2015 *)
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^9]^4 - 3 q^2 QPochhammer[ q^3] QPochhammer[ q^27]^3) / (QPochhammer[ q^3] QPochhammer[ q^9]), {q, 0, n}]; (* Michael Somos, Jun 16 2015 *)
f[p_, e_] := If[Mod[p, 3] == 1, e+1, (1 + (-1)^e) / 2]; f[3, 1] = -3; f[3, e_] := 0; a[n_] := Times @@ f @@@ FactorInteger[n]; a[0] = 0; a[1] = 1; Array[a, 100, 0] (* Amiram Eldar, Sep 04 2023 *)
PROG
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -3 * (e==1), p%3==1, e+1, !(e%2))))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^9 + A)^4 - 3 * x^2 * eta(x^3 + A) * eta(x^27 + A)^3) / (eta(x^3 + A) * eta(x^9 + A)), n))};
(Magma) A := Basis( ModularForms( Gamma1(27), 1), 85); A[2] - 3*A[4] + A[5] + 2*A[8] - 3*A[13] + 2*A[14] + A[15]; /* Michael Somos, Jun 16 2015 */
CROSSREFS
Sequence in context: A036871 A036876 A229038 * A330018 A065413 A372739
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Sep 23 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 02:35 EDT 2024. Contains 375842 sequences. (Running on oeis4.)