Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 04 2023 02:03:02
%S 1,0,-3,1,0,0,2,0,0,0,0,-3,2,0,0,1,0,0,2,0,-6,0,0,0,1,0,0,2,0,0,2,0,0,
%T 0,0,0,2,0,-6,0,0,0,2,0,0,0,0,-3,3,0,0,2,0,0,0,0,-6,0,0,0,2,0,0,1,0,0,
%U 2,0,0,0,0,0,2,0,-3,2,0,0,2,0,0,0,0,-6
%N Expansion of (b(q^3) - b(q)) / 3 in powers of q where b() is a cubic AGM theta function.
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%C Rogers and Zudilin (2011) page 6: "This identity can be verified by eliminating b(q) with b(q^{1/3}) - b(q) = 3c(q^3) - c(q)."
%C The zeros of the g.f. A(q) where q = exp(2 Pi i t) are of the form t = (m/2 + sqrt(-3)/18) / n where m is an odd integer and n is in A004611. For example, (1/2 + sqrt(-3)/18) / 1, (1/2 + sqrt(-3)/18) / 7, (5/2 + sqrt(-3)/18) / 13.
%H G. C. Greubel, <a href="/A229143/b229143.txt">Table of n, a(n) for n = 1..2500</a>
%H M. Rogers and W. Zudilin, <a href="http://arXiv.org/abs/1102.1153">On the Mahler measure of 1 + X + 1/X + Y + 1/Y</a>, arXiv:1102.1153 [math.NT], 2011.
%F Expansion of c(q^3) / 3 - c(q^9) in powers of q where c() is a cubic AGM theta function.
%F Expansion of (a(q) - 4*a(q^3) + 3*a(q^9)) / 6 in powers of q where a() is a cubic AGM theta function.
%F Expansion of (eta(q^3)^4 - eta(q)^3 * eta(q^9)) / (3 * eta(q^3) * eta(q^9)) in powers of q.
%F a(n) is multiplicative with a(3) = -3, a(3^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1 + (-1)^e) / 2 if p == 2 (mod 3).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
%F a(3*n + 2) = a(4*n + 2) = a(9*n) = a(9*n + 6) = 0. a(3*n + 1) = A033687(n). a(9*n + 3) = -3 * A033687(n).
%F From _Michael Somos_, Jun 16 2015: (Start)
%F a(4*n) = a(n). a(6*n + 1) = A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n).
%F a(n) = Sum_{d|n} A259024(n/d) * [ 0, 1, 0, -2, 0, 1][mod(d, 6) + 1]. (End)
%e G.f. = q - 3*q^3 + q^4 + 2*q^7 - 3*q^12 + 2*q^13 + q^16 + 2*q^19 - 6*q^21 + ...
%t a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3]^4 - QPochhammer[ q^9] QPochhammer[ q]^3) / (3 QPochhammer[ q^3] QPochhammer[ q^9]), {q, 0, n}]; (* _Michael Somos_, Jun 16 2015 *)
%t a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^9]^4 - 3 q^2 QPochhammer[ q^3] QPochhammer[ q^27]^3) / (QPochhammer[ q^3] QPochhammer[ q^9]), {q, 0, n}]; (* _Michael Somos_, Jun 16 2015 *)
%t f[p_, e_] := If[Mod[p, 3] == 1, e+1, (1 + (-1)^e) / 2]; f[3, 1] = -3; f[3, e_] := 0; a[n_] := Times @@ f @@@ FactorInteger[n]; a[0] = 0; a[1] = 1; Array[a, 100, 0] (* _Amiram Eldar_, Sep 04 2023 *)
%o (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==3, -3 * (e==1), p%3==1, e+1, !(e%2))))};
%o (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^9 + A)^4 - 3 * x^2 * eta(x^3 + A) * eta(x^27 + A)^3) / (eta(x^3 + A) * eta(x^9 + A)), n))};
%o (Magma) A := Basis( ModularForms( Gamma1(27), 1), 85); A[2] - 3*A[4] + A[5] + 2*A[8] - 3*A[13] + 2*A[14] + A[15]; /* _Michael Somos_, Jun 16 2015 */
%Y Cf. A004611, A033687, A097195, A121361, A123884, A259024.
%K sign,easy,mult
%O 1,3
%A _Michael Somos_, Sep 23 2013