login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229146
a(n) = n^3*(5*n+3)/2.
2
0, 4, 52, 243, 736, 1750, 3564, 6517, 11008, 17496, 26500, 38599, 54432, 74698, 100156, 131625, 169984, 216172, 271188, 336091, 412000, 500094, 601612, 717853, 850176, 1000000, 1168804, 1358127, 1569568, 1804786, 2065500, 2353489, 2670592, 3018708, 3399796
OFFSET
0,2
COMMENTS
Number of ascending runs in {1,...,n}^4.
FORMULA
G.f.: -(x^3+23*x^2+32*x+4)*x/(x-1)^5.
MAPLE
a:= n-> n^3*(5*n+3)/2:
seq(a(n), n=0..40);
MATHEMATICA
Table[n^3(5n+3)/2, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 4, 52, 243, 736}, 40] (* Harvey P. Dale, Apr 29 2022 *)
CROSSREFS
Row n=4 of A229079.
Sequence in context: A233474 A297764 A101354 * A071953 A247746 A221727
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 15 2013
STATUS
approved