login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229079
Number A(n,k) of ascending runs in {1,...,k}^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
19
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 7, 3, 0, 0, 4, 15, 20, 4, 0, 0, 5, 26, 63, 52, 5, 0, 0, 6, 40, 144, 243, 128, 6, 0, 0, 7, 57, 275, 736, 891, 304, 7, 0, 0, 8, 77, 468, 1750, 3584, 3159, 704, 8, 0, 0, 9, 100, 735, 3564, 10625, 16896, 10935, 1600, 9, 0
OFFSET
0,8
LINKS
FORMULA
A(n,k) = k^(n-1)*((n+1)*k+n-1)/2 for n>0, A(0,k) = 0.
EXAMPLE
A(4,1) = 4: [1,1,1,1].
A(3,2) = 20 = 3+3+2+3+2+2+2+3: [1,1,1], [2,1,1], [1,2,1], [2,2,1], [1,1,2], [2,1,2], [1,2,2], [2,2,2].
A(2,3) = 15 = 2+2+2+1+2+2+1+1+2: [1,1], [2,1], [3,1], [1,2], [2,2], [3,2], [1,3], [2,3], [3,3].
A(1,4) = 4 = 1+1+1+1: [1], [2], [3], [4].
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 7, 15, 26, 40, 57, 77, ...
0, 3, 20, 63, 144, 275, 468, 735, ...
0, 4, 52, 243, 736, 1750, 3564, 6517, ...
0, 5, 128, 891, 3584, 10625, 25920, 55223, ...
0, 6, 304, 3159, 16896, 62500, 182736, 453789, ...
0, 7, 704, 10935, 77824, 359375, 1259712, 3647119, ...
MAPLE
A:= (n, k)-> `if`(n=0, 0, k^(n-1)*((n+1)*k+n-1)/2):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
a[_, 0] = a[0, _] = 0; a[n_, k_] := k^(n-1)*((n+1)*k+n-1)/2; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)
CROSSREFS
Columns k=0-10 give: A000004, A001477, A066373(n+1) for n>0, A229277, A229278, A229279, A229280, A229281, A229282, A229283, A229284.
Main diagonal gives A229078.
Sequence in context: A228250 A341317 A101164 * A357144 A351786 A329331
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 14 2013
STATUS
approved