login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229147
a(n) = n^4*(3*n+2).
3
0, 5, 128, 891, 3584, 10625, 25920, 55223, 106496, 190269, 320000, 512435, 787968, 1171001, 1690304, 2379375, 3276800, 4426613, 5878656, 7688939, 9920000, 12641265, 15929408, 19868711, 24551424, 30078125, 36558080, 44109603, 52860416, 62948009, 74520000
OFFSET
0,2
COMMENTS
Number of ascending runs in {1,...,n}^5.
FORMULA
G.f.: (x^4+58*x^3+198*x^2+98*x+5)*x/(x-1)^6.
a(0)=0, a(1)=5, a(2)=128, a(3)=891, a(4)=3584, a(5)=10625, a(n)= 6*a(n-1)- 15*a(n-2)+ 20*a(n-3)- 15*a(n-4)+ 6*a(n-5)- a(n-6). - Harvey P. Dale, Aug 14 2015
E.g.f.: exp(x)*x*(5 + 59*x + 87*x^2 + 32*x^3 + 3*x^4). - Stefano Spezia, Jul 17 2024
MAPLE
a:= n-> n^4*(3*n+2):
seq(a(n), n=0..40);
MATHEMATICA
Table[n^4 (3n+2), {n, 0, 30}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 5, 128, 891, 3584, 10625}, 40] (* Harvey P. Dale, Aug 14 2015 *)
CROSSREFS
Row n=5 of A229079.
Sequence in context: A157438 A142803 A208859 * A224250 A316986 A355085
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 15 2013
STATUS
approved