Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 29 2022 18:35:30
%S 0,4,52,243,736,1750,3564,6517,11008,17496,26500,38599,54432,74698,
%T 100156,131625,169984,216172,271188,336091,412000,500094,601612,
%U 717853,850176,1000000,1168804,1358127,1569568,1804786,2065500,2353489,2670592,3018708,3399796
%N a(n) = n^3*(5*n+3)/2.
%C Number of ascending runs in {1,...,n}^4.
%H Alois P. Heinz, <a href="/A229146/b229146.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, -10, 10, -5, 1).
%F G.f.: -(x^3+23*x^2+32*x+4)*x/(x-1)^5.
%p a:= n-> n^3*(5*n+3)/2:
%p seq(a(n), n=0..40);
%t Table[n^3(5n+3)/2,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,4,52,243,736},40] (* _Harvey P. Dale_, Apr 29 2022 *)
%Y Row n=4 of A229079.
%K nonn,easy
%O 0,2
%A _Alois P. Heinz_, Sep 15 2013