login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372738
Binomial transform of A369795.
0
1, 4, 28, 298, 4240, 75394, 1608688, 40045618, 1139279680, 36463487554, 1296712045648, 50724943433938, 2164652356532320, 100072984472662114, 4982304066392196208, 265770533884409878258, 15122101633293034668160, 914210942121577873619074, 58519992421072004957876368, 3954059527570115477197922578
OFFSET
0,2
FORMULA
a(n) = Sum_{j=1..n} (1-(-1)^j-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
a(n) = 2^n + Sum_{j=1..n} (3^j-1)*binomial(n,j)*a(n-j).
a(n) = 1 + Sum_{j=1..n} (2^j-(-1)^j)*binomial(n,j)*a(n-j).
E.g.f.: exp(2*x)/(1 + exp(x) - exp(3*x)). - Vaclav Kotesovec, Jun 01 2024
MATHEMATICA
nmax = 20; CoefficientList[Series[E^(2*x)/(1 + E^x - E^(3*x)), {x, 0, nmax}], x]*Range[0, nmax]! (* Vaclav Kotesovec, Jun 01 2024 *)
PROG
(SageMath)
def a(n):
if n==0:
return 1
else:
return sum([(1-(-1)^j-(-2)^j)*binomial(n, j)*a(n-j) for j in [1, .., n]])
list(a(n) for n in [0, .., 20])
CROSSREFS
Sequence in context: A343709 A354147 A362475 * A274043 A007152 A345248
KEYWORD
nonn
AUTHOR
STATUS
approved