Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 28 2024 22:26:08
%S 1,4,28,298,4240,75394,1608688,40045618,1139279680,36463487554,
%T 1296712045648,50724943433938,2164652356532320,100072984472662114,
%U 4982304066392196208,265770533884409878258,15122101633293034668160,914210942121577873619074,58519992421072004957876368,3954059527570115477197922578
%N Binomial transform of A369795.
%F a(n) = Sum_{j=1..n} (1-(-1)^j-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
%F a(n) = 2^n + Sum_{j=1..n} (3^j-1)*binomial(n,j)*a(n-j).
%F a(n) = 1 + Sum_{j=1..n} (2^j-(-1)^j)*binomial(n,j)*a(n-j).
%F E.g.f.: exp(2*x)/(1 + exp(x) - exp(3*x)). - _Vaclav Kotesovec_, Jun 01 2024
%t nmax = 20; CoefficientList[Series[E^(2*x)/(1 + E^x - E^(3*x)), {x, 0, nmax}], x]*Range[0, nmax]! (* _Vaclav Kotesovec_, Jun 01 2024 *)
%o (SageMath)
%o def a(n):
%o if n==0:
%o return 1
%o else:
%o return sum([(1-(-1)^j-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]])
%o list(a(n) for n in [0,..,20])
%Y Cf. A369795, A355408.
%K nonn
%O 0,2
%A _Prabha Sivaramannair_, May 11 2024