login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354147
Expansion of e.g.f. 1/(1 - 4 * log(1+x)).
4
1, 4, 28, 296, 4168, 73376, 1550048, 38202048, 1076017344, 34096092672, 1200459182592, 46492497859584, 1964295942558720, 89906908894150656, 4431634108980264960, 234044235939806232576, 13184410813249253031936, 789137065405617987354624
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = 4 * Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k).
a(n) = Sum_{k=0..n} 4^k * k! * Stirling1(n, k).
a(n) ~ n! * exp(1/4) / (4 * (exp(1/4)-1)^(n+1)). - Vaclav Kotesovec, Jun 04 2022
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-4*log(1+x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=4*sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n, 4^k*k!*stirling(n, k, 1));
CROSSREFS
Column k=4 of A320080.
Sequence in context: A112938 A307083 A343709 * A362475 A372738 A274043
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 21 2022
STATUS
approved