login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307083
Expansion of 1/(1 - x/(1 - 3*x/(1 - 4*x/(1 - 7*x/(1 - 11*x/(1 - 18*x/(1 - ... - Lucas(k)*x/(1 - ...)))))))), a continued fraction.
2
1, 1, 4, 28, 292, 4408, 97432, 3231256, 164789104, 13170099856, 1670220282544, 338692348412320, 110327835695333920, 57892877044109184160, 49019180876700301391680, 67044425508546158335526080, 148216012413625321252632612160, 529829556146109541834263919553920
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * phi^(n*(n+1)/2), where phi = A001622 is the golden ratio and c = 5.62026823201787715079864730026619553810473701484813959397175006212578036... - Vaclav Kotesovec, Sep 18 2021
MAPLE
L:= proc(n) option remember; (<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1] end:
b:= proc(x, y) option remember; `if`(x=0 and y=0, 1,
`if`(x>0, b(x-1, y)*L(y-x+1), 0)+`if`(y>x, b(x, y-1), 0))
end:
a:= n-> b(n$2):
seq(a(n), n=0..17); # Alois P. Heinz, Nov 12 2023
MATHEMATICA
nmax = 17; CoefficientList[Series[1/(1 + ContinuedFractionK[-LucasL[k] x, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 23 2019
STATUS
approved