login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206742
G.f.: 1/(1 - x/(1 - x^3/(1 - x^4/(1 - x^7/(1 - x^11/(1 - x^18/(1 -...- x^Lucas(n)/(1 -...)))))))), a continued fraction.
5
1, 1, 1, 1, 2, 3, 4, 6, 10, 15, 22, 34, 53, 80, 121, 187, 287, 436, 666, 1023, 1564, 2386, 3652, 5593, 8548, 13065, 19995, 30590, 46767, 71524, 109425, 167361, 255934, 391466, 598795, 915805, 1400649, 2142358, 3276767, 5011632, 7665186, 11724011, 17931702, 27426003
OFFSET
0,5
LINKS
FORMULA
a(n) ~ c * d^n, where d = 1.52948673740109160123259225872298170871226757805081837... and c = 0.3181991399535991335364627230448471420031275308618... - Vaclav Kotesovec, Aug 25 2017
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 10*x^8 +...
MATHEMATICA
nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(LucasL[Range[nmax + 1]])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
PROG
(PARI) {Lucas(n)=polcoeff(x*(1+2*x)/(1-x-x^2+x*O(x^n)), n)}
{a(n)=local(CF=1+x*O(x^n), M=ceil(log(n+1)/log(1.6))); for(k=0, M, CF=1/(1-x^Lucas(M-k+1)*CF)); polcoeff(CF, n, x)}
for(n=0, 55, print1(a(n), ", "))
CROSSREFS
Cf. A206741.
Sequence in context: A374763 A147788 A104977 * A221992 A221993 A221994
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2012
STATUS
approved