login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206741
G.f.: 1/(1 - x/(1 - x/(1 - x^2/(1 - x^3/(1 - x^5/(1 - x^8/(1 -...- x^Fibonacci(n)/(1 -...)))))))), a continued fraction.
6
1, 1, 2, 4, 9, 20, 45, 102, 231, 524, 1189, 2698, 6124, 13900, 31551, 71618, 162566, 369013, 837633, 1901368, 4315978, 9796979, 22238489, 50479892, 114585999, 260102617, 590415686, 1340204451, 3042175244, 6905536091, 15675109089, 35581458383, 80767551510
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n, where d = 2.2699337019511296354569330617166782764872939098477919669570757033487700138... and c = 0.3272015736512679060779796519077970622372291004190408455581585307453... - Vaclav Kotesovec, Aug 25 2017
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 45*x^6 + 102*x^7 +...
MATHEMATICA
nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Fibonacci[Range[nmax + 1]])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
PROG
(PARI) {a(n)=local(CF=1+x*O(x^n), M=ceil(log(n+1)/log(1.6))); for(k=0, M, CF=1/(1-x^fibonacci(M-k+1)*CF)); polcoeff(CF, n, x)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Sequence in context: A213411 A080135 A227978 * A167750 A343756 A329276
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2012
STATUS
approved