This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213411 G.f. A(x) = 1 / (1 - x^a(0) / (1 - x^a(1) / (1 - x^a(2) / ... ))). 3
 1, 1, 2, 4, 9, 20, 45, 101, 228, 514, 1160, 2617, 5906, 13327, 30075, 67868, 153156, 345621, 779953, 1760094, 3971951, 8963378, 20227382, 45646511, 103009086, 232457449, 524579615, 1183802763, 2671451479, 6028582814, 13604518396, 30700900429, 69281782713 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS EXAMPLE 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 45*x^6 + 101*x^7 + 228*x^8 + ... MATHEMATICA terms = 29; f[k_] := If[k >= 0, -x^a[k], 1]; F[m_] := ContinuedFractionK[ f[k], 1, {k, -1, m}]; s[0] = {a[0] -> 1}; eq[n_] := eq[n] = Normal[( F[n-1] /. s[n-1]) + O[x]^(n+1)] - Sum[a[k] x^k, {k, 0, n}] == 0 /. s[n-1]; s[n_] := s[n] = Join[s[n-1], SolveAlways[eq[n], x] [[1]]]; Reap[ Do[ Print["a(", n, ") = ", an = a[n] /. s[n]]; Sow[an], {n, 0, terms-1} ]][[2, 1]] (* Jean-François Alcover, Jul 16 2017 *) CROSSREFS Sequence in context: A085584 A080019 A052534 * A080135 A227978 A206741 Adjacent sequences:  A213408 A213409 A213410 * A213412 A213413 A213414 KEYWORD nonn,nice AUTHOR Michael Somos, Jun 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:46 EST 2019. Contains 329850 sequences. (Running on oeis4.)