login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) = 1 / (1 - x^a(0) / (1 - x^a(1) / (1 - x^a(2) / ... ))).
3

%I #19 Jul 17 2017 02:26:47

%S 1,1,2,4,9,20,45,101,228,514,1160,2617,5906,13327,30075,67868,153156,

%T 345621,779953,1760094,3971951,8963378,20227382,45646511,103009086,

%U 232457449,524579615,1183802763,2671451479,6028582814,13604518396,30700900429,69281782713

%N G.f. A(x) = 1 / (1 - x^a(0) / (1 - x^a(1) / (1 - x^a(2) / ... ))).

%e 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 45*x^6 + 101*x^7 + 228*x^8 + ...

%t terms = 29; f[k_] := If[k >= 0, -x^a[k], 1]; F[m_] := ContinuedFractionK[ f[k], 1, {k, -1, m}]; s[0] = {a[0] -> 1}; eq[n_] := eq[n] = Normal[( F[n-1] /. s[n-1]) + O[x]^(n+1)] - Sum[a[k] x^k, {k, 0, n}] == 0 /. s[n-1]; s[n_] := s[n] = Join[s[n-1], SolveAlways[eq[n], x] [[1]]]; Reap[ Do[ Print["a(", n, ") = ", an = a[n] /. s[n]]; Sow[an], {n, 0, terms-1} ]][[2, 1]] (* _Jean-François Alcover_, Jul 16 2017 *)

%K nonn,nice

%O 0,3

%A _Michael Somos_, Jun 10 2012