login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206738 G.f.: 1/(1 - x^2/(1 - x^5/(1 - x^8/(1 - x^11/(1 - x^14/(1 - x^17/(1 -...- x^(3*n-1)/(1 -...)))))))), a continued fraction. 1
1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 9, 11, 14, 18, 22, 29, 35, 46, 56, 73, 90, 116, 144, 184, 231, 292, 370, 465, 591, 742, 942, 1185, 1502, 1893, 2395, 3023, 3819, 4826, 6093, 7702, 9724, 12290, 15519, 19611, 24767, 31294, 39527, 49937, 63082 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

From Peter Bala, 15 Dec 2015: (Start)

We have the simple continued fraction expansions (A(x) is the sequence o.g.f.): A(1/n) = [1; n^2 - 2, 1, n^3 - 2, 1, n^5 - 2, 1, n^6 - 2, 1, n^8 - 2, 1, n^9 - 2, 1, n^11 - 2, 1, n^12 - 2, 1, ...] for n >= 2 and A(-1/n) = [ 1, n^2 - 1, n^3 - 1, 1, n^5 - 1, n^6 - 1, 1, n^8 - 1, n^9 - 1, 1, n^11 - 1, n^12 - 1, 1, ...] for n >= 2. Cf. A005169, A111317 and A143951. (End)

LINKS

Table of n, a(n) for n=0..55.

FORMULA

a(n) ~ c * d^n, where d = 1.26326802855134275222... and c = 0.16506173508242936... - Vaclav Kotesovec, Aug 25 2017

EXAMPLE

G.f.: A(x) = 1 + x^2 + x^4 + x^6 + x^7 + x^8 + 2*x^9 + x^10 + 3*x^11 + ...

Simple continued fraction expansions: A(1/2) = 1.34788543155288690684 ... = [1; 2, 1, 6, 1, 30, 1, 62, 1, 254, 1, 510, 1, 2046, 1, 4094, 1, ...] and A(-1/2) = 1.3199498363818812865 ... = [1; 3, 7, 1, 31, 63, 1, 255, 511, 1, 2047, 4095, 1, ...]. - Peter Bala, Dec 15 2015

MATHEMATICA

nmax = 60; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(3*Range[nmax + 1]-1)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)

PROG

(PARI) {a(n)=local(CF=1+x*O(x^n), M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^(3*M-3*k+2)*CF)); polcoeff(CF, n, x)}

for(n=0, 55, print1(a(n), ", "))

CROSSREFS

Cf. A206737, A143951, A005169, A111317.

Sequence in context: A239948 A034391 A239243 * A282971 A174618 A144241

Adjacent sequences:  A206735 A206736 A206737 * A206739 A206740 A206741

KEYWORD

nonn,easy

AUTHOR

Paul D. Hanna, Feb 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 19:22 EDT 2018. Contains 316271 sequences. (Running on oeis4.)