login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174618
For n odd a(n) = a(n-2) + a(n-3), for n even a(n) = a(n-2) + a(n-5); with a(1) = 0, a(2) = 1.
2
0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 10, 11, 17, 17, 28, 27, 45, 44, 72, 72, 116, 117, 188, 189, 305, 305, 494, 493, 799, 798, 1292, 1292, 2090, 2091, 3382, 3383, 5473, 5473, 8856, 8855, 14329, 14328, 23184, 23184, 37512, 37513, 60696
OFFSET
1,7
COMMENTS
Combination a(2n)=A005252(n-1) and a(2n+1)=A024490(n). Consecutive pairs add up to A000045 and subtract to A010892. If a(1)= 1 formula gives: A103609.
FORMULA
G.f.: x^2*(1-x^2+x^3) / ( (1-x^2+x^4)*(1-x^2-x^4) ). - R. J. Mathar, Jan 27 2011
a(n) = (1/2)*(A110161(n-3) - A110161(n-2) + A079977(n-2) + A079977(n-1)). - G. C. Greubel, Oct 23 2024
EXAMPLE
As consecutive pairs: (0,1),(0,1),(1,1),(2,1),(3,2),(4,4),...
MATHEMATICA
nxt[{n_, a_, b_, c_, d_, e_}]:={n+1, b, c, d, e, If[EvenQ[n], d+c, d+a]}; NestList[nxt, {5, 0, 1, 0, 1, 1}, 50][[All, 2]] (* or *) LinearRecurrence[ {0, 2, 0, -1, 0, 0, 0, 1}, {0, 1, 0, 1, 1, 1, 2, 1}, 60] (* Harvey P. Dale, Nov 15 2019 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 70);
[0] cat Coefficients(R!( x^2*(1-x^2+x^3)/((1-x^2+x^4)*(1-x^2-x^4)) )); // G. C. Greubel, Oct 23 2024
(SageMath)
def A174618(n): return (kronecker(12, n-3) - kronecker(12, n-2) + ((n+1)%2)*fibonacci(n//2) + (n%2)*fibonacci((n+1)//2))//2
[A174618(n) for n in range(1, 71)] # G. C. Greubel, Oct 23 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mark Dols, Mar 23 2010
STATUS
approved