The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143951 Number of Dyck paths such that the area between the x-axis and the path is n. 13
 1, 1, 1, 1, 2, 3, 4, 6, 9, 14, 21, 31, 47, 71, 107, 161, 243, 367, 553, 834, 1258, 1898, 2863, 4318, 6514, 9827, 14824, 22361, 33732, 50886, 76762, 115796, 174680, 263509, 397508, 599647, 904579, 1364576, 2058489, 3105269, 4684359, 7066449, 10659877, 16080632, 24257950, 36593598, 55202165, 83273553, 125619799, 189499952 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Column sums of A129182. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 1001 terms from Vincenzo Librandi) P. Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv preprint arXiv:1205.2565 [math.CO], 2012. - From N. J. A. Sloane, Oct 18 2012 FORMULA G.f.: 1/(1 - x/(1 - x^3/(1 - x^5/(1 - x^7/(1 - x^9/(1 - ... Derivation: the g.f. G(x,z) of Dyck paths, where x marks area and z marks semilength, satisfies G(x,z)=1+x*z*G(x,z)*G(x,x^2*z). Set z=1. From Peter Bala, Dec 26 2012: (Start) Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 3, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-2 + 1/(1 + 1/(n^2-2 + 1/(1 + 1/(n^3-2 + 1/(1 + ...)))))). For n >= 1, F(-1/n) has the simple continued fraction expansion 1/(1 + 1/(n + 1/(n^2 + 1/(n^3 + ...)))). Examples are given below. Cf. A005169 and A111317. (End) G.f.: A(x) = 1/(1 - x/(1-x + x/(1+x^2 + x^4/(1-x^3 - x^2/(1+x^4 - x^7/(1-x^5 + x^3/(1+x^6 + x^10/(1-x^7 - x^4/(1+x^8 - x^13/(1-x^9 + x^5/(1+x^10 + x^16/(1 + ...)))))))))))), a continued fraction. - Paul D. Hanna, Aug 08 2016 a(n) ~ c / r^n, where r = 0.66290148514884660355890958314994090329776181932364... and c = 0.337761150388658511453531309376653385721253805309269777158... . - Vaclav Kotesovec, Feb 17 2017 From Peter Bala, Jul 04 2019: (Start) O.g.f. as a ratio of q-series: N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2+n)/( (1-q^2)*(1-q^4)*...*(1-q^(2*n)) ) and D(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2-n)/( (1-q^2)*(1-q^4)*...*(1-q^(2*n)) ). Cf. A224704. D(q) has its least  positive (and simple) real zero at x = 0.66290 14851 48843 71255 69040 .... a(n) ~ c*d^n, where  d = 1/x = 1.5085197761707628638804960 ...  and c = - N(x)/(x*D'(x)) = 0.3377611503885397734660921 ... (the prime indicates differentiation w.r.t. q). (End) EXAMPLE a(5)=3 because we have UDUUDD, UUDDUD and UDUDUDUDUD, where U=(1,1) and D=(1,-1). From Peter Bala, Dec 26 2012: (Start) F(1/10) = sum {n >= 0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(8 + 1/(1 + 1/(98 + 1/(1 + 1/(998 + 1/(1 + ...)))))). F(-1/10) = sum {n >= 0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(10 + 1/(100 + 1/(1000 + ...)))). (End) MAPLE g:=1/(1-x/(1-x^3/(1-x^5/(1-x^7/(1-x^9/(1-x^11/(1-x^13/(1-x^15)))))))): gser:= series(g, x=0, 45): seq(coeff(gser, x, n), n=0..44); # second Maple program: b:= proc(x, y, k) option remember;       `if`(y<0 or y>x or k<0 or k>x^2/2-(y-x)^2/4, 0,       `if`(x=0, 1, b(x-1, y-1, k-y+1/2) +b(x-1, y+1, k-y-1/2)))     end: a:= n-> add(b(2*n-4*t, 0, n), t=0..n/2): seq(a(n), n=0..50);  # Alois P. Heinz, Aug 24 2018 MATHEMATICA terms = 50; CoefficientList[1/(1+ContinuedFractionK[-x^(2i-1), 1, {i, 1, Sqrt[terms]//Ceiling}]) + O[x]^terms, x] (* Jean-François Alcover, Jul 11 2018 *) PROG (PARI) N=66; q = 'q +O('q^N); G(k) = if(k>N, 1, 1 - q^(k+1) / G(k+2) ); gf = 1 / G(0); Vec(gf) \\ Joerg Arndt, Jul 06 2013 CROSSREFS Cf. A129182, A291874 (convolution inverse). Cf. A005169, A111317, A224704. Sequence in context: A078620 A073941 A005428 * A328262 A292800 A214041 Adjacent sequences:  A143948 A143949 A143950 * A143952 A143953 A143954 KEYWORD nonn AUTHOR Emeric Deutsch, Oct 09 2008 EXTENSIONS b-file corrected and extended by Alois P. Heinz, Aug 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 10:00 EDT 2020. Contains 333300 sequences. (Running on oeis4.)