The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239948 Number of partitions of n such that (number of distinct parts) < least part. 8
 1, 0, 1, 1, 2, 1, 3, 2, 4, 4, 6, 6, 9, 9, 12, 14, 17, 18, 25, 26, 32, 38, 43, 49, 62, 65, 78, 92, 103, 114, 142, 151, 175, 203, 229, 252, 302, 323, 378, 422, 477, 524, 619, 661, 758, 847, 958, 1038, 1204, 1297, 1485, 1626, 1829, 1989, 2285, 2459, 2770, 3035 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) + A239952(n) = A000041(n) for n >= 0. EXAMPLE a(10) counts these 6 partitions:  [10], [7,3], [6,4], [5,5], [4,3,3], [2,2,2,2,2]. MAPLE b:= proc(n, i, d) option remember; `if`(n=0, 1, `if`(i<=d+1, 0,       add(b(n-i*j, i-1, d+`if`(j=0, 0, 1)), j=0..n/i)))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..80);  # Alois P. Heinz, Apr 02 2014 MATHEMATICA z = 50; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; d[p] < Min[p]], {n, 0, z}]  (*A239948*) Table[Count[f[n], p_ /; d[p] <= Min[p]], {n, 0, z}] (*A239949*) Table[Count[f[n], p_ /; d[p] == Min[p]], {n, 0, z}] (*A239950*) Table[Count[f[n], p_ /; d[p] > Min[p]], {n, 0, z}]  (*A239951*) Table[Count[f[n], p_ /; d[p] >= Min[p]], {n, 0, z}] (*A239952*) b[n_, i_, d_] := b[n, i, d] = If[n==0, 1, If[i <= d+1, 0, Sum[b[n-i*j, i-1, d + If[j==0, 0, 1]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *) CROSSREFS Cf. A239949, A239950, A239951, A239952. Sequence in context: A001687 A159072 A116928 * A034391 A239243 A206738 Adjacent sequences:  A239945 A239946 A239947 * A239949 A239950 A239951 KEYWORD nonn,easy AUTHOR Clark Kimberling, Mar 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 11:31 EDT 2020. Contains 336298 sequences. (Running on oeis4.)