login
A239948
Number of partitions of n such that (number of distinct parts) < least part.
8
1, 0, 1, 1, 2, 1, 3, 2, 4, 4, 6, 6, 9, 9, 12, 14, 17, 18, 25, 26, 32, 38, 43, 49, 62, 65, 78, 92, 103, 114, 142, 151, 175, 203, 229, 252, 302, 323, 378, 422, 477, 524, 619, 661, 758, 847, 958, 1038, 1204, 1297, 1485, 1626, 1829, 1989, 2285, 2459, 2770, 3035
OFFSET
0,5
LINKS
FORMULA
a(n) + A239952(n) = A000041(n) for n >= 0.
EXAMPLE
a(10) counts these 6 partitions: [10], [7,3], [6,4], [5,5], [4,3,3], [2,2,2,2,2].
MAPLE
b:= proc(n, i, d) option remember; `if`(n=0, 1, `if`(i<=d+1, 0,
add(b(n-i*j, i-1, d+`if`(j=0, 0, 1)), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 02 2014
MATHEMATICA
z = 50; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; d[p] < Min[p]], {n, 0, z}] (*A239948*)
Table[Count[f[n], p_ /; d[p] <= Min[p]], {n, 0, z}] (*A239949*)
Table[Count[f[n], p_ /; d[p] == Min[p]], {n, 0, z}] (*A239950*)
Table[Count[f[n], p_ /; d[p] > Min[p]], {n, 0, z}] (*A239951*)
Table[Count[f[n], p_ /; d[p] >= Min[p]], {n, 0, z}] (*A239952*)
b[n_, i_, d_] := b[n, i, d] = If[n==0, 1, If[i <= d+1, 0, Sum[b[n-i*j, i-1, d + If[j==0, 0, 1]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 30 2014
STATUS
approved