login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111317
Let f(a,q) = Product_{j>=0} (1 - a*q^j); g.f. is f(q^2,q^3) / f(q,q^3).
14
1, 1, 0, 0, 1, 0, -1, 1, 1, -1, 0, 1, -1, 0, 2, -1, -1, 2, -1, -2, 3, 1, -3, 2, 1, -4, 2, 3, -4, 1, 4, -5, 0, 6, -5, -2, 7, -5, -4, 10, -3, -7, 10, -2, -10, 11, 1, -13, 11, 4, -16, 11, 9, -19, 8, 12, -22, 7, 19, -24, 2, 24, -26, -3, 32, -25, -10, 37, -25, -18, 45, -21, -29, 49, -17, -39, 56, -8, -51, 58, 0, -65, 61, 14, -78, 59, 27, -92
OFFSET
0,15
COMMENTS
Convolution inverse of A111165.
LINKS
G. E. Andrews and B. C. Berndt, Your Hit Parade: The Top Ten Most Fascinating Formulas in Ramanujan's Lost Notebook, Notices Amer. Math. Soc., 55 (No. 1, 2008), 18-30. See p. 25, Equation (39).
FORMULA
Euler transform of period 3 sequence [ 1, -1, 0, ...]. - Michael Somos, Dec 23 2007
G.f.: Product_{k>=0} (1 - x^(3*k+2)) / (1 - x^(3*k+1)).
G.f.: exp( Sum_{n>=1} 1/(1 + x^n + x^(2n)) * x^n/n ). - Paul D. Hanna, Jan 23 2010
From Peter Bala, Dec 2012: (Start)
Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 2, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-1 + 1/(1 + 1/(n^2-1 + 1/(1 + 1/(n^3-1 + 1/(1 + ...)))))).
For n >= 2, F(-1/n) has the simple continued fraction expansion
1/(1 + 1/(n-1 + 1/(n^2+1 + 1/(n^3-1 + ...)))). Examples are given below. Cf. A005169 and A143951.
(End)
EXAMPLE
From Peter Bala, Dec 2012: (Start)
F(1/10) = Sum_{n>=0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(9 + 1/(1 + 1/(99 + 1/(1 + 1/(999 + 1/(1 + ...)))))).
F(-1/10) = Sum_{n>=0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(101 + 1/(999 + 1/(1001 + ...))))).
(End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*[0, 1, -1][irem(d, 3)+1],
d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..80); # Alois P. Heinz, Apr 01 2014
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*{0, 1, -1}[[Mod[d, 3]+1]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=0, n\3, (1 - x^(3*k+2)) / (1 - x^(3*k+1)), 1 + x * O(x^n)), n))} /* Michael Somos, Dec 23 2007 */
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 1/(1+x^m+x^(2*m)+x*O(x^n))*x^m/m)), n)} \\ Paul D. Hanna, Jan 23 2010
(Sage) # uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(-1, -1)
a = EulerTransform(b)
print([a(n) for n in range(88)]) # Peter Luschny, Nov 17 2022
CROSSREFS
Sequence in context: A308972 A137900 A025837 * A105202 A240236 A356606
KEYWORD
sign,look
AUTHOR
N. J. A. Sloane, Nov 09 2005
STATUS
approved