Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Nov 18 2022 08:56:24
%S 1,1,0,0,1,0,-1,1,1,-1,0,1,-1,0,2,-1,-1,2,-1,-2,3,1,-3,2,1,-4,2,3,-4,
%T 1,4,-5,0,6,-5,-2,7,-5,-4,10,-3,-7,10,-2,-10,11,1,-13,11,4,-16,11,9,
%U -19,8,12,-22,7,19,-24,2,24,-26,-3,32,-25,-10,37,-25,-18,45,-21,-29,49,-17,-39,56,-8,-51,58,0,-65,61,14,-78,59,27,-92
%N Let f(a,q) = Product_{j>=0} (1 - a*q^j); g.f. is f(q^2,q^3) / f(q,q^3).
%C Convolution inverse of A111165.
%H Alois P. Heinz, <a href="/A111317/b111317.txt">Table of n, a(n) for n = 0..10000</a>
%H G. E. Andrews and B. C. Berndt, <a href="http://www.ams.org/notices/200801/tx080100018p.pdf">Your Hit Parade: The Top Ten Most Fascinating Formulas in Ramanujan's Lost Notebook</a>, Notices Amer. Math. Soc., 55 (No. 1, 2008), 18-30. See p. 25, Equation (39).
%F Euler transform of period 3 sequence [ 1, -1, 0, ...]. - _Michael Somos_, Dec 23 2007
%F G.f.: Product_{k>=0} (1 - x^(3*k+2)) / (1 - x^(3*k+1)).
%F G.f.: exp( Sum_{n>=1} 1/(1 + x^n + x^(2n)) * x^n/n ). - _Paul D. Hanna_, Jan 23 2010
%F From _Peter Bala_, Dec 2012: (Start)
%F Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 2, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-1 + 1/(1 + 1/(n^2-1 + 1/(1 + 1/(n^3-1 + 1/(1 + ...)))))).
%F For n >= 2, F(-1/n) has the simple continued fraction expansion
%F 1/(1 + 1/(n-1 + 1/(n^2+1 + 1/(n^3-1 + ...)))). Examples are given below. Cf. A005169 and A143951.
%F (End)
%e From _Peter Bala_, Dec 2012: (Start)
%e F(1/10) = Sum_{n>=0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(9 + 1/(1 + 1/(99 + 1/(1 + 1/(999 + 1/(1 + ...)))))).
%e F(-1/10) = Sum_{n>=0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(101 + 1/(999 + 1/(1001 + ...))))).
%e (End)
%p a:= proc(n) option remember; `if`(n=0, 1,
%p add(add(d*[0, 1, -1][irem(d, 3)+1],
%p d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..80); # _Alois P. Heinz_, Apr 01 2014
%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*{0, 1, -1}[[Mod[d, 3]+1]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Apr 09 2014, after _Alois P. Heinz_ *)
%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=0, n\3, (1 - x^(3*k+2)) / (1 - x^(3*k+1)), 1 + x * O(x^n)), n))} /* _Michael Somos_, Dec 23 2007 */
%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n+1,1/(1+x^m+x^(2*m)+x*O(x^n))*x^m/m)),n)} \\ _Paul D. Hanna_, Jan 23 2010
%o (Sage) # uses[EulerTransform from A166861]
%o b = BinaryRecurrenceSequence(-1, -1)
%o a = EulerTransform(b)
%o print([a(n) for n in range(88)]) # _Peter Luschny_, Nov 17 2022
%Y Cf. A005169, A143951.
%K sign,look
%O 0,15
%A _N. J. A. Sloane_, Nov 09 2005