The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111165 Let qf(a,q) = Product(1-a*q^j,j=0..infinity); g.f. is qf(q,q^3)/qf(q^2,q^3). 3
 1, -1, 1, -1, 0, 1, -1, 0, 1, -2, 2, 0, -2, 2, -1, -1, 3, -2, -1, 3, -3, 0, 4, -5, 2, 3, -6, 4, 2, -7, 6, 0, -7, 9, -2, -7, 10, -5, -6, 13, -8, -5, 15, -13, -1, 16, -17, 2, 16, -22, 8, 16, -27, 14, 12, -30, 22, 9, -34, 29, 3, -36, 39, -5, -37, 47, -14, -36, 58, -26, -33, 66, -41, -26, 75, -56, -18, 81, -74, -4, 87, -94, 12, 87, -113, 34 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA Euler transform of period 3 sequence [ -1, 1, 0, ...]. - Michael Somos, Dec 23 2007 G.f.: Product_{k>=0} (1 - x^(3*k+1)) / (1 - x^(3*k+2)). MAPLE a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, -1, 1][irem(d, 3)+1], d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..100); # Alois P. Heinz, Apr 02 2014 MATHEMATICA a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*{0, -1, 1}[[Mod[d, 3]+1]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 28 2014, after Alois P. Heinz *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=0, n\3, (1 - x^(3*k+1)) / (1 - x^(3*k+2)), 1 + x * O(x^n)), n))} /* Michael Somos, Dec 23 2007 */ CROSSREFS Cf. A111375. Convolution inverse of A111317. Sequence in context: A215283 A066518 A218491 * A349812 A029321 A029310 Adjacent sequences: A111162 A111163 A111164 * A111166 A111167 A111168 KEYWORD sign,look AUTHOR N. J. A. Sloane, Nov 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 07:26 EDT 2023. Contains 363157 sequences. (Running on oeis4.)