

A111168


Semiprimes n such that 2*n  1 is also a semiprime.


6



25, 26, 33, 35, 39, 46, 58, 62, 65, 85, 93, 94, 111, 118, 119, 133, 134, 145, 146, 155, 161, 178, 183, 202, 206, 209, 214, 219, 226, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299, 334, 335, 341, 361, 362, 377, 382, 386, 391, 393, 395, 407, 422
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Define an mth degree Tomaszewski nchain of the first (second) kind and length k to be a sequence of nalmost primes p(1) < p(2) < ... < p(k) such that s(i+1) = m*s(i) +() 1 for i = 1, ..., k1. Notice that a 2nd degree Tomaszewski 1chain of the first (second) kind is the familiar Cunningham chain of the first (second) kind.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


FORMULA

{a(n)} = a(n) is an element of A001358 and 2*a(n)1 is an element of A001358.


EXAMPLE

n s(n) s*21
1 25 = 5^2 49 = 7^2
2 26 = 2 * 13 51 = 3 * 17
3 33 = 3 * 11 65 = 5 * 13
4 35 = 5 * 7 69 = 3 * 23
5 39 = 3 * 13 77 = 7 * 11


MATHEMATICA

Select[Range[500], PrimeOmega[#]==2&&PrimeOmega[2#1]==2&] (* Harvey P. Dale, Aug 30 2015 *)


PROG

(PARI) is(n)=bigomega(n)==2 && bigomega(2*n1)==2 \\ Charles R Greathouse IV, Jan 31 2017


CROSSREFS

Cf. A001358, A111153, A111170, A111171, A111173, A111176.
Sequence in context: A132415 A292931 A067810 * A195331 A175426 A045567
Adjacent sequences: A111165 A111166 A111167 * A111169 A111170 A111171


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Oct 21 2005


EXTENSIONS

Extended by Ray Chandler, Oct 22 2005


STATUS

approved



