login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111170 Semiprimes S such that 3*S + 1 is also a semiprime. 5
15, 35, 38, 39, 55, 62, 82, 86, 87, 91, 106, 111, 115, 118, 119, 134, 142, 155, 159, 178, 187, 194, 218, 226, 235, 254, 259, 267, 278, 287, 295, 298, 299, 314, 319, 326, 327, 334, 335, 339, 371, 382, 386, 391, 395, 398, 411, 422, 427, 446, 451, 454, 502, 515 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This is analogous to Sophie Germain semiprimes A111153 and the chains shown are analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. Define a 3n+1 semiprime chain of length k. This is a sequence of semiprimes s(1) < s(2) < ... < s(k) such that s(i+1) = 3*s(i) + 1 for i = 1, ..., k-1. Length 3: 111, 334, 1003; 142, 427, 1282. Length 4: 35, 106, 319, 958; 86, 259, 778, 2335; 187, 562, 1687, 5062.

LINKS

Table of n, a(n) for n=1..54.

FORMULA

{a(n)} = a(n) is an element of A001358 and 3*a(n)+1 is an element of A001358.

EXAMPLE

n s(n) 3*s + 1

1 15 = 3 * 5 46 = 2 * 23

2 35 = 5 * 7 106 = 2 * 53

3 38 = 2 * 19 115 = 5 * 23

4 39 = 3 * 13 118 = 2 * 59

5 55 = 5 * 11 166 = 2 * 83

6 62 = 2 * 31 187 = 11 * 17

CROSSREFS

Cf. A001358, A111153, A111168, A111171, A111173, A111176.

Sequence in context: A027443 A205148 A253055 * A134335 A257591 A284406

Adjacent sequences:  A111167 A111168 A111169 * A111171 A111172 A111173

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Oct 21 2005

EXTENSIONS

Extended by Ray Chandler, Oct 22 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 05:04 EDT 2020. Contains 333155 sequences. (Running on oeis4.)