The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111173 Sophie Germain triprimes: k and 2k + 1 are both the product of 3 primes, not necessarily distinct. 9
 52, 76, 130, 171, 172, 212, 238, 318, 322, 325, 332, 357, 370, 387, 388, 402, 423, 430, 436, 442, 465, 507, 508, 556, 604, 610, 654, 665, 670, 710, 722, 747, 759, 762, 772, 775, 786, 790, 805, 814, 822, 826, 847, 874, 885, 902, 906, 916, 927, 942, 987, 1004 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS There should also be triprime chains of length j analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A triprime chain of length j is a sequence of triprimes a(1) < a(2) < ... < a(j) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., j-1. The first of these are: Length 3: 332, 665, 1331 = 11^3; 387, 775, 1551 = 3 * 11 * 47. LINKS Zak Seidov, Table of n, a(n) for n = 1..1000 OEIS Wiki, Triprimes FORMULA {a(n)} = a(n) is an element of A014612 and 2*a(n)+1 is an element of A014612. EXAMPLE n      k = a(n)           2k + 1 =  ================  ================ 1   52 = 2^2 * 13    105 = 3 * 5 * 7 2   76 = 2^2 * 19    153 = 3^2 * 17 3  130 = 2 * 5 * 13  261 = 3^2 * 29 4  171 = 3^2 * 19    343 = 7^3 5  172 = 2^2 * 43    345 = 3 * 5 * 23 6  212 = 2^2 * 53    425 = 5^2 * 17 MATHEMATICA fQ[n_]:=PrimeOmega[n] == 3 == PrimeOmega[2 n + 1]; Select[Range@1100, fQ] (* Vincenzo Librandi, Aug 19 2018 *) PROG (PARI) is(n)=bigomega(n)==3 && bigomega(2*n+1)==3 \\ Charles R Greathouse IV, Feb 01 2017 Is3primes:=func; [n: n in [2..1200] | Is3primes(n) and Is3primes(2*n+1)]; // Vincenzo Librandi, Aug 19 2018 CROSSREFS Cf. A005384, A014612, A111153, A111168, A111170, A111171, A111176. Sequence in context: A043991 A326235 A118148 * A090793 A090791 A234099 Adjacent sequences:  A111170 A111171 A111172 * A111174 A111175 A111176 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Oct 21 2005 EXTENSIONS Extended by Ray Chandler, Oct 22 2005 Edited by Jon E. Schoenfield, Aug 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 16:37 EDT 2022. Contains 354119 sequences. (Running on oeis4.)