login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A111173
Sophie Germain triprimes: k and 2k + 1 are both the product of 3 primes, not necessarily distinct.
9
52, 76, 130, 171, 172, 212, 238, 318, 322, 325, 332, 357, 370, 387, 388, 402, 423, 430, 436, 442, 465, 507, 508, 556, 604, 610, 654, 665, 670, 710, 722, 747, 759, 762, 772, 775, 786, 790, 805, 814, 822, 826, 847, 874, 885, 902, 906, 916, 927, 942, 987, 1004
OFFSET
1,1
COMMENTS
There should also be triprime chains of length j analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A triprime chain of length j is a sequence of triprimes a(1) < a(2) < ... < a(j) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., j-1. The first of these are: Length 3: 332, 665, 1331 = 11^3; 387, 775, 1551 = 3 * 11 * 47.
LINKS
FORMULA
{a(n)} = a(n) is an element of A014612 and 2*a(n)+1 is an element of A014612.
EXAMPLE
n k = a(n) 2k + 1
= ================ ================
1 52 = 2^2 * 13 105 = 3 * 5 * 7
2 76 = 2^2 * 19 153 = 3^2 * 17
3 130 = 2 * 5 * 13 261 = 3^2 * 29
4 171 = 3^2 * 19 343 = 7^3
5 172 = 2^2 * 43 345 = 3 * 5 * 23
6 212 = 2^2 * 53 425 = 5^2 * 17
MATHEMATICA
fQ[n_]:=PrimeOmega[n] == 3 == PrimeOmega[2 n + 1]; Select[Range@1100, fQ] (* Vincenzo Librandi, Aug 19 2018 *)
PROG
(PARI) is(n)=bigomega(n)==3 && bigomega(2*n+1)==3 \\ Charles R Greathouse IV, Feb 01 2017
(Magma) Is3primes:=func<i|&+[d[2]: d in Factorization(i)] eq 3>; [n: n in [2..1200] | Is3primes(n) and Is3primes(2*n+1)]; // Vincenzo Librandi, Aug 19 2018
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 21 2005
EXTENSIONS
Extended by Ray Chandler, Oct 22 2005
Edited by Jon E. Schoenfield, Aug 18 2018
STATUS
approved