OFFSET
1,1
COMMENTS
There should also be triprime chains of length j analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A triprime chain of length j is a sequence of triprimes a(1) < a(2) < ... < a(j) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., j-1. The first of these are: Length 3: 332, 665, 1331 = 11^3; 387, 775, 1551 = 3 * 11 * 47.
LINKS
Zak Seidov, Table of n, a(n) for n = 1..1000
OEIS Wiki, Triprimes
EXAMPLE
n k = a(n) 2k + 1
= ================ ================
1 52 = 2^2 * 13 105 = 3 * 5 * 7
2 76 = 2^2 * 19 153 = 3^2 * 17
3 130 = 2 * 5 * 13 261 = 3^2 * 29
4 171 = 3^2 * 19 343 = 7^3
5 172 = 2^2 * 43 345 = 3 * 5 * 23
6 212 = 2^2 * 53 425 = 5^2 * 17
MATHEMATICA
fQ[n_]:=PrimeOmega[n] == 3 == PrimeOmega[2 n + 1]; Select[Range@1100, fQ] (* Vincenzo Librandi, Aug 19 2018 *)
PROG
(PARI) is(n)=bigomega(n)==3 && bigomega(2*n+1)==3 \\ Charles R Greathouse IV, Feb 01 2017
(Magma) Is3primes:=func<i|&+[d[2]: d in Factorization(i)] eq 3>; [n: n in [2..1200] | Is3primes(n) and Is3primes(2*n+1)]; // Vincenzo Librandi, Aug 19 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 21 2005
EXTENSIONS
Extended by Ray Chandler, Oct 22 2005
Edited by Jon E. Schoenfield, Aug 18 2018
STATUS
approved