login
A111176
Sophie Germain 4-almost primes.
9
40, 220, 580, 712, 808, 812, 904, 940, 1062, 1192, 1444, 1592, 1612, 1690, 1812, 1876, 2002, 2152, 2212, 2236, 2254, 2488, 2502, 2562, 2650, 2662, 2788, 3010, 3052, 3064, 3112, 3162, 3208, 3258, 3272, 3352, 3448, 3550, 3580, 3820, 3832, 3892, 3910, 4012
OFFSET
1,1
COMMENTS
4-almost primes P such that 2*P + 1 are also 4-almost primes. There should also be 4-almost prime chains of length k analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A 4-almost prime chain of length k is a sequence of 4-almost primes a(1) < a(2) < ... < a(k) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., k-1. There are no such chains beginning with integers under 1200.
LINKS
FORMULA
{a(n)} = a(n) is an element of A014613 and 2*a(n)+1 is an element of A014613.
EXAMPLE
n p 2*p+1
1 40 = 2^3 * 5 81 = 3^4
2 220 = 2^2 * 5 * 11 441 = 3^2 * 7^2
3 580 = 2^2 * 5 * 29 1161 = 3^3 * 43
4 712 = 2^3 * 89 1425 = 3 * 5^2 * 19
5 808 = 2^3 * 101 1617 = 3 * 7^2 * 11
6 812 = 2^2 * 7 * 29 1625 = 5^3 * 13
MATHEMATICA
Select[Range[5000], PrimeOmega[#]==PrimeOmega[2#+1]==4&] (* Harvey P. Dale, Nov 09 2011 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 22 2005
EXTENSIONS
Extended by Ray Chandler, Oct 22 2005
STATUS
approved