

A257591


Odd numbers which are not prime powers but which have a proper divisor == 1 mod 4.


4



15, 35, 39, 45, 51, 55, 63, 65, 75, 85, 87, 91, 95, 99, 105, 111, 115, 117, 119, 123, 135, 143, 145, 147, 153, 155, 159, 165, 171, 175, 183, 185, 187, 189, 195, 203, 205, 207, 215, 219, 221, 225, 231, 235, 245, 247, 255, 259, 261, 265, 267, 273, 275, 279, 285
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Hiroaki Yamanouchi, Table of n, a(n) for n = 1..3124
R. Lauterbach, Equivariant Bifurcation and Absolute Irreducibility in R^8: A Contribution to Ize Conjecture and Related Bifurcations, Journal of Dynamics and Differential Equations, Oct 2014; DOI 10.1007/s1088401494021.


EXAMPLE

63 = 7*9 is not a power of a prime and has a proper divisor 9 == 1 mod 4.


PROG

(PARI) lista(nn) = {forstep(n=1, nn, 2, if (!isprimepower(n) && sumdiv(n, d, (d != 1) && (d != n) && ((d % 4)==1)), print1(n, ", ")); ); } \\ Michel Marcus, Jun 19 2015


CROSSREFS

Subsequence of A061346.
Sequence in context: A338063 A111170 A134335 * A284406 A329589 A154988
Adjacent sequences: A257588 A257589 A257590 * A257592 A257593 A257594


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, May 14 2015


EXTENSIONS

a(7)=57 removed and a(11)a(55) added by Hiroaki Yamanouchi, May 20 2015


STATUS

approved



