login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257588
If n = abcd... in decimal, a(n) = |a^2 - b^2 + c^2 - d^2 + ...|.
8
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 0, 3, 8, 15, 24, 35, 48, 63, 80, 4, 3, 0, 5, 12, 21, 32, 45, 60, 77, 9, 8, 5, 0, 7, 16, 27, 40, 55, 72, 16, 15, 12, 7, 0, 9, 20, 33, 48, 65, 25, 24, 21, 16, 9, 0, 11, 24, 39, 56, 36, 35, 32, 27, 20, 11, 0, 13, 28, 45, 49
OFFSET
0,3
COMMENTS
a(n) = 0 iff n is in A352535. - Bernard Schott, Jul 08 2022
LINKS
MAPLE
a:= n-> (l-> abs(add(l[i]^2*(-1)^i, i=1..nops(l))))(convert(n, base, 10)):
seq(a(n), n=0..70); # Alois P. Heinz, Mar 24 2022
MATHEMATICA
Array[Abs@ Total@ MapIndexed[(2 Boole@ EvenQ[First[#2]] - 1) (#1^2) &, IntegerDigits[#]] &, 70] (* Michael De Vlieger, Feb 27 2022 *)
PROG
(Haskell)
a257588 = abs . f 1 where
f _ 0 = 0
f s x = s * d ^ 2 + f (negate s) x' where (x', d) = divMod x 10
-- Reinhard Zumkeller, May 10 2015
(Python)
def A257588(n):
return abs(sum((int(d)**2*(-1)**j for j, d in enumerate(str(n)))))
# Chai Wah Wu, May 10 2015
(PARI) a(n) = my(d=digits(n)); abs(sum(k=1, #d, (-1)^k*d[k]^2)); \\ Michel Marcus, Feb 27 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, May 10 2015
STATUS
approved