login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352535
Numbers m such that A257588(m) = 0.
2
0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 220, 330, 354, 440, 453, 550, 660, 770, 880, 990, 1001, 1100, 1111, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1221, 1331, 1441, 1487, 1551, 1575, 1661, 1771, 1784, 1881, 1991, 2002, 2112, 2200, 2211, 2222, 2233, 2244, 2255, 2266, 2277
OFFSET
1,2
COMMENTS
If m is a term, 10*m is also a term; so, terms with no trailing zeros are all primitive terms.
Palindromes with even number of digits (A056524) are all terms.
FORMULA
A257588(a(n)) = 0.
EXAMPLE
354 is a term since 3^2 - 5^2 + 4^2 = 0 (with Pythagorean triple (3,4,5)).
1487 is a term since 1^2 - 4^2 + 8^2 - 7^2 = 0.
MATHEMATICA
f[n_] := Abs @ Total[(d = IntegerDigits[n]^2) * (-1)^Range[Length[d]]]; Select[Range[0, 2300], f[#] == 0 &] (* Amiram Eldar, Mar 20 2022 *)
PROG
(Python)
from itertools import count, islice
def A352535_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda m: not sum(int(d)**2*(-1 if i % 2 else 1) for i, d in enumerate(str(m))), count(max(startvalue, 0)))
A352535_list = list(islice(A352535_gen(), 30)) # Chai Wah Wu, Mar 24 2022
CROSSREFS
Subsequences: A056524, A333440, A338754.
Sequence in context: A080195 A004920 A136613 * A113585 A071273 A377948
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Mar 20 2022
STATUS
approved