login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080195
11-smooth numbers which are not 7-smooth.
3
11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 154, 165, 176, 198, 220, 231, 242, 264, 275, 297, 308, 330, 352, 363, 385, 396, 440, 462, 484, 495, 528, 539, 550, 594, 605, 616, 660, 693, 704, 726, 770, 792, 825, 847, 880, 891, 924, 968, 990, 1056, 1078, 1089
OFFSET
1,1
COMMENTS
Numbers of the form 2^r*3^s*5^t*7^u*11^v with r, s, t, u >= 0, v > 0.
LINKS
FORMULA
a(n) = 11 * A051038(n). - David A. Corneth, May 27 2017
Sum_{n>=1} 1/a(n) = 7/16. - Amiram Eldar, Nov 10 2020
EXAMPLE
33 = 3*11 is a term but 35 = 5*7 is not.
MAPLE
N:= 10^6; # to get all terms <= N
A:= NULL;
for v from 1 to floor(log[11](N)) do
V:= 11^v;
for u from 0 to floor(log[7](N/V)) do
U:= 7^u*V;
for t from 0 to floor(log[5](N/U)) do
T:= 5^t*U;
for s from 0 to floor(log[3](N/T)) do
S:= 3^s*T;
for r from 0 to floor(log[2](N/S)) do
A:= A, 2^r*S
od
od
od
od
od:
{A}; # Robert Israel, May 28 2014
MATHEMATICA
Select[Range[1000], FactorInteger[#][[-1, 1]] == 11 &] (* Amiram Eldar, Nov 10 2020 *)
PROG
(PARI) {m=1100; z=[]; for(r=0, floor(log(m)/log(2)), a=2^r; for(s=0, floor(log(m/a)/log(3)), b=a*3^s; for(t=0, floor(log(m/b)/log(5)), c=b*5^t; for(u=0, floor(log(m/c)/log(7)), d=c*7^u; for(v=1, floor(log(m/d)/log(11)), z=concat(z, d*11^v)))))); z=vecsort(z); for(i=1, length(z), print1(z[i], ", "))}
(Python)
from sympy import integer_log, prevprime
def A080195(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1))
def f(x): return n+x-g(x, 11)
return 11*bisection(f, n, n) # Chai Wah Wu, Oct 22 2024
CROSSREFS
Sequence in context: A059632 A008593 A135499 * A004920 A136613 A352535
KEYWORD
easy,nonn
AUTHOR
Klaus Brockhaus, Feb 10 2003
STATUS
approved