OFFSET
1,1
COMMENTS
Numbers of the form 2^r*3^s*5^t*7^u*11^v*13^w with r, s, t, u, v >= 0, w > 0.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
78 = 2*3*13 is a term but 77 = 7*11 is not.
MATHEMATICA
Select[Range[1000], FactorInteger[#][[-1, 1]] == 13 &] (* Amiram Eldar, Nov 10 2020 *)
PROG
(PARI) {m=1040; z=[]; for(r=0, floor(log(m)/log(2)), a=2^r; for(s=0, floor(log(m/a)/log(3)), b=a*3^s; for(t=0, floor(log(m/b)/log(5)), c=b*5^t; for(u=0, floor(log(m/c)/log(7)), d=c*7^u; for(v=0, floor(log(m/d)/log(11)), e=d*11^v; for(w=1, floor(log(m/e)/log(13)), z=concat(z, e*13^w))))))); z=vecsort(z); for(i=1, length(z), print1(z[i], ", "))}
(Python)
from sympy import integer_log, prevprime
def A080196(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1))
def f(x): return n+x-g(x, 13)
return 13*bisection(f, n, n) # Chai Wah Wu, Oct 22 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Klaus Brockhaus, Feb 10 2003
STATUS
approved