login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080196
13-smooth numbers which are not 11-smooth.
4
13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156, 169, 182, 195, 208, 234, 260, 273, 286, 312, 325, 338, 351, 364, 390, 416, 429, 455, 468, 507, 520, 546, 572, 585, 624, 637, 650, 676, 702, 715, 728, 780, 819, 832, 845, 858, 910, 936, 975, 1001, 1014, 1040
OFFSET
1,1
COMMENTS
Numbers of the form 2^r*3^s*5^t*7^u*11^v*13^w with r, s, t, u, v >= 0, w > 0.
LINKS
FORMULA
From Amiram Eldar, Nov 10 2020: (Start)
a(n) = 13 * A080197(n).
Sum_{n>=1} 1/a(n) = 77/192. (End)
EXAMPLE
78 = 2*3*13 is a term but 77 = 7*11 is not.
MATHEMATICA
Select[Range[1000], FactorInteger[#][[-1, 1]] == 13 &] (* Amiram Eldar, Nov 10 2020 *)
PROG
(PARI) {m=1040; z=[]; for(r=0, floor(log(m)/log(2)), a=2^r; for(s=0, floor(log(m/a)/log(3)), b=a*3^s; for(t=0, floor(log(m/b)/log(5)), c=b*5^t; for(u=0, floor(log(m/c)/log(7)), d=c*7^u; for(v=0, floor(log(m/d)/log(11)), e=d*11^v; for(w=1, floor(log(m/e)/log(13)), z=concat(z, e*13^w))))))); z=vecsort(z); for(i=1, length(z), print1(z[i], ", "))}
(Python)
from sympy import integer_log, prevprime
def A080196(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1))
def f(x): return n+x-g(x, 13)
return 13*bisection(f, n, n) # Chai Wah Wu, Oct 22 2024
CROSSREFS
Sequence in context: A044898 A048842 A008595 * A033025 A044838 A033010
KEYWORD
easy,nonn
AUTHOR
Klaus Brockhaus, Feb 10 2003
STATUS
approved